БАКТЕРІОЦИНИ ФАКУЛЬТАТИВНО-АНАЕРОБНИХ СПОРОУТВОРЮВАЛЬНИХ БАКТЕРІЙ

Автор(и)

  • М. В. Штеніков Одеський національний університет імені І.І. Мечникова, Ukraine
  • В. О. Іваниця Одеський національний університет імені І.І. Мечникова, Ukraine https://orcid.org/0000-0001-5325-3800

DOI:

https://doi.org/10.18524/2307-4663.2017.2(38).105024

Ключові слова:

бактеріоцини, Bacillus, Bacillaceae, лантибіотики, сактибіотики, азолвмісні, пептиди, лассо-пептиди

Анотація

В огляді наведена інформація щодо бактеріоцинів – низькомолекулярних білків факультативно-анаеробних спороутворювальних бактерій (ФАСБ), що володіють антимікробною активністю, їх класифікації, структури та властивостей. Серед бактеріоцинів ФАСБ виділяють такі, що при синтезі зазнають вторинної модифікації, та такі, що їй не піддаються. Перші в свою чергу поділяються на лантибіотики, циклічні пептиди, сактібіотики, глікоцини, лінійні азолвмісні бактеріоцини та лассо-пептиди, які виявлені в ФАСБ поки лише методами біонформатики. Серед не модифікованих бактеріоцинів ФАСБ виділяють педіоцин-подібні та некласифіковані. Окремо стоїть група бактеріоцинів, які мають високу молекулярну масу та на даний час мало досліджені. Ступінь вивчення різних таксономічних груп ФАСБ на предмет бактеріоциногенності на даний момент є дуже нерівномірним. Основні продуценти належать до родів Bacillus та Paenibacillus, для деяких родин інформація в літературі відсутня. Вивчення бактеріоцинів ФАСБ – перспективний напрямок як фундаментальних, так і прикладних досліджень.

Посилання

Abee T. Pore-forming bacteriocins of Gram-positive bacteria andselfprotection mechanisms of producer organisms. FEMS Microbiology Letters. 1995;(129):l–10.

Abriouel H, Franz CM, Ben Omar N, Gálvez A. Diversityandapplicationsof Bacillus bacteriocins. FEMS Microbiology Rev. 2011;(35):201–232.

Alvarez-Sieiro P, Montalbán-López M, Mu D, Kuipers OP. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol. 2016(100):2939-2951.

Ansari A, Aman A, Siddiqui NN, Iqbal S Ali ul Qader S. Bacteriocin (BAC-IB17): Screening, isolation and production from Bacillus subtilis KIBGE IB-17. Pak. J. Pharm. Sci. 2012;(25):195–201.

Antimicrobial Resistance. Global Report on surveillance 2014 Available at: http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf

Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJ, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk W.A. Ribosomally synthesized and posttranslationallymodified peptide natural products: overview andrecommendations for a universal nomenclature. Nat.Prod.Rep. 2013;(30):108–160.

Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letters in Applied Microbiology. 1991;(13):202-206

Balciunas EM, Martinez FAC,Todorov SD, Gombossy de Melo Franco BD, Converti A , Pinheiro de Souza Oliveira R. Novel biotechnological applications of bacteriocins: A review. Food Control. 2013:(32):134–142.

Bali V, Panesar PS, Bera MB, Kennedy JF. Bacteriocins: Recent Trends and Potential Applications. Critical Reviews in Food Science and Nutrition. 2016;(56):817–834.

Barbosa J, Caetano T, Mendo S. Class I and Class II Lanthipeptides Produced by Bacillus spp. J. Nat. Prod. 2015;(78):2850–2866.

Baruzzi F, Quintieri L, Morea M,Caputo L. Antimicrobial compounds produced by Bacillus spp. and applications in in food. Science against microbial pathogens: communicating current research and technological advances. 2011;(2):1102–1111.

Basi-Chipalu S, Dischinger J, Josten M, Szekat C, Zweynert A, Sahl HG, Bierbaum G. Pseudomycoicidin, a Class II Lantibiotic from Bacillus pseudomycoides. Applied and Environmental Microbiology. 2015; (81):3419–3429.

Bastos MC, Coelho ML, Santos OC. Resistance to bacteriocins produced byGram-positive bacteria. Microbiology. 2015(161):683–700.

Bochmann SM, Spieß T, Kötter P, Entian KD. Synthesis and Succinylation of Subtilin-Like Lantibiotics Are Strongly Influenced by Glucose and Transition State Regulator AbrB. Appl Environ Microbiol. 2015;(81):614–622.

Chopra L, Singh G, Choudhary V, Sahoo DK. Sonorensin: an Antimicrobial Peptide, Belonging to theHeterocycloanthracin Subfamily of Bacteriocins, from a New MarineIsolate, Bacillus sonorensis MT93. Applied and Environmental Microbiology. 2014;(80):2981–2990.

Collins FW, O'Connor PM, O'Sullivan O, Rea MC, Hill C, Ross RP. Formicin – a novel broad-spectrum two-component lantibiotic produced by Bacillus paralicheniformis APC 1576. Microbiology. 2016;(162):1662–1671.

Crvallo DE, Gianmarco SD, Silva RJ. Health and Environment in Aquaculture. InTech, 2012. 428 p.

Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH. Alternatives to antibiotics – a pipeline portfolio review. Lancet Infect Dis. 2016;16:239–251.

De Vos P, Garrity G, Jones, D, Krieg, NR, Ludwig W, Rainey FA, Schleifer KH, Whitman W. Bergey’s Manual Of Systematic Bacteriology Second Edition Volume Three The Firmicutes. Springer Heidelberg London New York, 2009. 1450 p.

Dias L, Caetano T, Pinheiro M, Mendo S. The lanthipeptides of Bacillus methylotrophicus and their association withgenomic islands. Systematic and Applied Microbiology. 2015;(38):525-533.

Donk van der WA, Nair SK. Structure and mechanism of lanthipeptide biosynthetic Enzymes. Current Opinion in Structural Biology. 2014;(29):58-66.

Drider D, Bendali F, Naghmouchi K, Chikindas ML. Bacteriocins: Not Only Antibacterial Agents. Probiotics & Antimicro. Prot. 2016;(8):177-182

Dworkin M. The Prokaryotes Bacteria: Firmicutes, Cyanobacteria. Springer, 2006. 1182 p.

Egan K, Field D, Rea MC, Ross RP, Hill C, Cotter PD. Bacteriocins: Novel Solutions to AgeOld Spore-Related Problems? Front Microbiol. 2016; 7, available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824776/

Fajardo-Сavazos P., Maughan H., Nicholson W.L. Evolution in the Bacillaceae. Microbiol. Spectrum. 2014; 2, available at: https://www.ncbi.nlm.nih.gov/pubmed/26104365

Fickers P. Antibiotic Compounds from Bacillus: Why are they so Amazing? American Journal of Biochemistry and Biotechnology. 2012;(8):38–43.

Field D, Cotter PD, Hill C, Ross RP.Bioengineering Lantibioticsfor Therapeutic Success. Front. Microbiol. 2015;(6):1363.

Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol. 2008;(81):591–606.

Ghadbane M, Harzallah D, Laribi AI, Jaouadi B, Belhadj H. Purification and Biochemical Characterization of a Highly Thermostable Bacteriocin Isolated from Brevibacillus brevis Strain GM100. Biotechnol. Biochem. 2013;(77):151–160.

Gholizadeh SS, Baserisalehi M, Bahador N. Study on Bioactive Compounds Produced by Soil Origin Brevibacillus spp. Nature Environment and Pollution Technology. 2013;(12):209–214.

Huang T, Zhang X, Pan J, Su X, Jin X, Guan X. Purification and Characterizationof a Novel Cold Shock Protein-Like Bacteriocin Synthesized by Bacillus thuringiensis. Sci. Rep. – 2016; 6, available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5071883/

Jack RW, Tagg JR, Ray B.Bacteriocins of gram-positive bacteria. Microbiol. Rev. 1995;(59):171–200.

Ji S, Li W, Baloch AR, Wang M, Cao B. Improved production of sublancin via introduction of three characteristic promoters into operon clusters responsible for this novel distinct glycopeptide biosynthesis. Microbial Cell Factories. 2015; 14, available at: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-015-0201-0

Kate S. Perspectives on lantibiotic discovery – where havewe failed and what improvements are required? Expert Opin. Drug Discov. 2015;(10):315–320.

Khosa S, Lagedroste M, Smits SHJ. Protein Defense Systems against theLantibiotic Nisin: Function of theImmunity Protein NisI and the Resistance Protein NSR. Front. Microbiol. 2016;(7):1-9.

Klaenhammer TR. FEMS Genetics of bacteriocins produced by lactic acid bacteria. Microbiol. Rev. 1993;(12):39–85.

List of Prokaryotic names with Standing in Nomenclature. Available: http://www.bacterio.net/bacillus.html

Lohans CT, Vederas JC.Structural characterization of thioether-bridged Bacteriocins. The Journal of Antibiotics. 2013;(67):23–30.

López-Meza JE, Ochoa-Zarzosa A, Barboza-Corona JE, Bideshi DK. Antimicrobial Peptides: Current and Potential Applications inBiomedical Therapies. BioMed Research International. 2015; 2015, available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4365301/

Malanovic N, Lohner K. Antimicrobial Peptides TargetingGram-Positive Bacteria. BacteriaPharmaceuticals. 2016;(9):1–33.

Mandic-Mulec I, Stefanic P, van Elsas JD.. Ecology of Bacillaceae. Microbiology Spectrum. 2015;(3):1-24.

Marsh AJ, O'Sullivan O, Ross RP, Cotter PD, Hill C. In silico analysis highlights the frequency anddiversity of type I lantibiotic gene clusters ingenome sequenced bacteria. BMC Genomics. 2010;(11):1-21.

Mathur H, Rea MC, Cotter PD, Hill C., Ross RP.The Sactibiotic Subclass of Bacteriocins: An Update. Current Protein and Peptide Science. 2015. (16):549–558.

Mathur H, Rea MC, Fallico V, Cotter PD, Hill C, Ross P. Flow Cytometry as a Tool to Study the Effects of Bacteriocins on Prokaryoticand Eukaryotic Cells. J. Mol. Biomarkers Diagn. 2016; 8, available at:https://www.omicsonline.org/open-access/flow-cytometry-as-a-tool-to-study-the-effects-of-bacteriocins-onprokaryoticand-eukaryotic-cells-2155-9929-S8-013.php

Mercer DK, O’Neil DA. Peptides as the next generation ofanti-infectives. Future Med. Chem. 2013;(5):315–337.

Mondol MAM, Shin HJ, Islam MT. Diversity of Secondary Metabolites from Marine BacillusSpecies: Chemistry and Biological Activity. Mar. Drugs. 2013;(11):2846–2872.

Mongkolthanaruk W. Classification of Bacillus Beneficial Substances Related to Plants, Humans and Animals. J. Microbiol. Biotechnol. 2012;(22):1597–1604.

Montalbán-López M, Heel van AJ, Kuipers OP.Employing the promiscuity of lantibiotic biosyntheticmachineries to produce novel antimicrobials. FEMS Microbiology Reviews. 2016;(41):5–18.

Montalbán-López M, Sánchez-Hidalgo M, Cebrián R, Maqueda M. Discovering the Bacterial Circular Proteins: Bacteriocins, Cyanobactins, and Pilins. The Journal Of Biological Chemistry. 2012;(287):27007–27013.

Nawrocki KL, Crispell EK, McBride SM. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antibiotics. 2014;(3):461–492.

Newman DJ, Cragg GM. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016;(79):629−661.

Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE. Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins. Probiotics Antimicrob Proteins. 2010;(2):52−60.

O’Connor PM, Ross RP, Hill C, Cotter PD. Antimicrobial antagonists against food pathogens; a bacteriocin perspective. Current Opinion in Food Science. 2015;(2):51-57.

Oliveira VF, Abreu YJL, Fleming LR, Nascimento JS. Anti-Staphylococcal and Antifungal SubstancesProduced By Endospore-Forming Bacilli. Journal of Applied Pharmaceutical Science. 2012;(2):154–157.

Ongey EL, Neubauer P. Lanthipeptides: chemical synthesisversus in vivo biosynthesis as toolsfor pharmaceutical production. Microb. Cell. Fact. 2016;(15):97.

Panasiuk K, Andruschenko Y. Antimicrobial Substances Of Natural Origin As An Alternative To Antibiotics. Scientific Works of NUFT. 2014;(20):61-68.

Pidot SJ, Coyne S, Kloss F, Hertweck C. Antibiotics from neglected bacterial sources. International Journal of Medical Microbiology. 2014;(304):14–22.

Pranckutė P, Kaunietis A, Kananavičiūtė R, Lebedeva J, Kuisienė N, Šaleikienė J, Čitavičius D. Differences of antibacterial activity spectra and properties of bacteriocins, producedby Geobacillus sp. bacteria isolated from different environments. Journal of microbiology, biotechnology and food sciences. 2015;(5):155–161.

Prieto ML, O'Sullivan L, Tan SP, McLoughlin P, Hughes H, O'Connor PM, Cotter PD, Lawlor PG, Gardiner GE. Assessment of the Bacteriocinogenic Potential of MarineBacteria Reveals Lichenicidin Production by Seaweed-Derived Bacillus spp. Mar. Drugs. 2012;(10):2280–2299.

Revilla-Guarinos A, Gebhard S, Mascher T, Zúñiga M. Defence against antimicrobial peptides: different strategies in Firmicutes. Environmental Microbiology. 2014;(16):1225–1237

Riley MA, Chavan MA. Bacteriocins: Ecology and Evolution. Verlag Berlin Heidelberg: Springer, 2007. 135 p.

Riley MA, Robinson SM, Roy CM, Dorit RL. Rethinking the composition of a rational antibiotic arsenal for the 21st century. Future Med. Chem. 2013;(5):1231–1242.

Rosenberg E. The Prokaryotes Firmicutes and Tenericutes. Springer, 2014. 573p.

Salazar-Marroquín EL, Galán-Wong LJ, Moreno-Medina VR, Reyes-López MÁ, Pereyra-Alférez B. Bacteriocins synthesized by Bacillus thuringiensis:generalities and potential applications. Reviews in Medical Microbiology. 2016;(27):95–101.

Sansinenea E, Ortiz A. Secondary metabolites of soil Bacillus spp. Biotechnol Lett. 2011;(33):1523–1538.

Sella SR, Vandenberghe LP, Soccol CR. Bacillus atrophaeus: main characteristics and biotechnologicalapplications – a review. Crit Rev Biotechnol. 2014;(35):533–545.

Senbagam D, Gurusamy R, Senthilkumar B. Physical chemical and biological characterization of a new bacteriocinproduced by Bacillus cereus NS02. Asian. Pac. J. Trop. Med. 2013;(6):934–941.

Sharma V, Aseri GK, Sohal JS, Khare N, Kumar V. Exploration of Bacteriocins as Potential Food Preservatives. International Journal of Pharmaceutical Technology and Biotechnology. 2016;(3):55–82.

Singh PK, Chittpurna, Ashish, Sharma V, Patil PB, Korpole S. Identification, Purification and Characterization of Laterosporulin, a Novel Bacteriocin Produced by Brevibacillus sp. Strain GI-9 PLoS One. 2012; 7, available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0031498

Snyder AB, Worobo RW. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. J. Sci. Food. Agric. 2014;(94):28–44.

Spieß T, Korn SM, Kötter P, Entian KD. Autoinduction Specificities of the Lantibiotics Subtilin and Nisin. Applied and Environmental Microbiology. 2015. –(81):7914–7923.

Stein T. Bacillus subtilis antibiotics: structures, syntheses andspecific functions. Molecular Microbiology. 2005;(56):845–857.

Sumi CD, Yang BW, Yeo IC, Hahm YT. Antimicrobial peptides of the genus Bacillus: a new era for Antibiotics Chandra. Can. J. Microbiol. 2015;(61):93–103.

Tagg JR, Dajani AS, Wannamaker LW. Bacteriocins of Gram-Positive Bacteria. Bacteriological Reviews. 1976;(40):722–756.

Wang G, Mishra B, Lau K, Lushnikova T, Golla R, Wang X. Antimicrobial Peptides in 2014. Pharmaceuticals. 2015;(8):123–150.

Willey JM, van der Donk WA.Lantibiotics: Peptides of Diverse Structure and Function. Annu. Rev. Microbiol. 2007;(61):477–501.

Xin B, Zheng J, Xu Z, Song X, Ruan L, Peng D, Sun M. The Bacillus cereus Group Is an Excellent Reservoir of Novel Lanthipeptides. Applied and Environmental Microbiology. 2015;(81):1765–1774.

Zhang Q , Yu Y, Vélasquez JE,van der Donk WA. Evolution of lanthipeptide synthetases. PNAS. 2012;(109):18361–18366.

Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics. 2016;(17):1-18.

Zheng J, Gänzle MG, Lin XB. Ruan L, Sun M. Diversity and dynamics of bacteriocins from human microbiome. Environmental Microbiology. 2015;(17):2133–2143.

##submission.downloads##

Опубліковано

2017-06-30

Номер

Розділ

ОГЛЯДОВІ ТА ТЕОРЕТИЧНІ СТАТТІ