ПЕРСПЕКТИВИ ВИКОРИСТАННЯ БАКТЕРІЙ У КУЛЬТУРІ КЛІТИН ТА ТКАНИН РОСЛИН

Автор(и)

  • Н. В. Титаренко Одеський національний університет імені І.І. Мечникова, Ukraine
  • Н. І. Теслюк Одеський національний університет імені І.І. Мечникова, Ukraine https://orcid.org/0000-0002-5195-8281
  • В. О. Іваниця Одеський національний університет імені І.І. Мечникова, Ukraine https://orcid.org/0000-0001-5325-3800

DOI:

https://doi.org/10.18524/2307-4663.2020.3(50).214202

Ключові слова:

взаємодія бактерій та рослин, мікроклональне розмноження, бактерії роду Bacillus, адаптація від умов in vitro до ex vitro

Анотація

В огляді представлені дані сучасних джерел літератури про взаємодію бактерій та рослин. Наведено особливості співіснування рослин і епіфітних та ендофітних мікроорганізмів у природних умовах і в культурі in vitro. Освітлено переваги взаємодії рослин і бактерій та проблеми відсутності мікробіоти у саджанців рослин при мікроклональному розмноженні. Детально описано досвід використання мікроорганізмів у культурі клітин та тканин рослин. Описано процеси інокуляції бактерій на мікроклони рослин. Також розглянута культура рослин in vitro як модель взаємодії бактерій та рослин. Освітлено ріст-стимулювальні та антагоністичні властивості бактерій роду Bacillus, що потенційно можуть мати корисний вплив на рослини під час адаптації до умов ex vitro. Розглянуто перспективи використання бактерій роду Bacillus на етапі акліматизації рослин до умов ex vitro. Наведено приклади успішного використання бактерій роду Bacillus для стимуляції росту рослин та для захисту від патогенів.

Посилання

Aballay E, Martensson A, Persson P. Screening of rhizosphere bacteria from grapevine for their suppressive efect on Xiphinema index Thorne & Allen on in vitro grape plants. Plant Soil. 2011;(347):313–325

Abreu-Tarazi MF, Navarrete AA, Andreote FD, Almeida CV, Tsai SM, Almeida M. Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR–DGGE. World J Microbiol Biotech­nol. 2010; (26):555–560

Ali S, Duan J, Charles TC, Glick BR. A bioinformatics approach to the de­termination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol. 2014;(343):193–198

Andreote FD, da Rocha UN, Araujo WL, Azevedo JL, van Overbeek LS. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tu­berosum). Antonie Van Leeuwenhoek. 2010;(97):389–399

Ardanov P, Ovcharenko L, Zaets I, Kozyrovska N, Pirttila A. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tubero­sum L.). Biol Control. 2011;(56):43–49

Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Pirttila AM. Methylo­bacterium-induced endophyte community changes correspond with protec­tion of plants against pathogen attack. PLoS ONE. 2012; (7):46802

Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Ku­doyarova GR. Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil. 2007;(292):305–315

Balla I, Vertesy J, Koves-Pechy K, Voros I, Bujtas Z, Biro B. Acclimation results of micropropagated black locust (Robina pseudoacacia L.) improved by symbiotic micro-organisms .Plant Cell Tissue Organ Cult. 1998;(52):113– 115

Barka EA, Nowak J, Clement S. Enhancement of chilling resistance of in­oculated grapevine plantlets with a plant growthpromoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Env Microbiol. 2006

Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil. 2014;(378):1–33

Bensalim S, Nowak J, Asiedu SK. A plant growth promoting rhizobacterium and temperature efects on performance of 18 clones of potato. Am J Potato Res. 1998

Borriss R. Comparative analysis of the complete genome sequence of the plant growthpromoting bacterium Bacillus amyloliquefaciens FZB42. Mo­lecular microbial ecology of the rhizosphere. 2013;(2):883–898

Borriss R. Use of plant-associated Bacillus strains as biofertilizers and bio­control agents. Bacteria in agrobiology: plant growth responses. 2011; 41 – 76

Bottini R, Cassan F, Piccoli P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol. 2004;(65):497–503

Budiharjo A, Chowdhury SP, Dietel K. Transposon mutagenesis of the plan­tassociated Bacillus amyloliquefaciens ssp. plantarum FZB42 revealed that the nfrA and the RBAM17410 genes are involved in plant-microbe interac­tions. PLoS One. 2014;(9):5

Burlak OP, de Vera JP, Yatsenko V, Kozyrovska NO. Putative mechanisms of bacterial efects on plant photosystem under stress. Biopolym Cell. 2013;(29):3–10

Cassells AC. Detection and elimination of microbial endophytes and preven­tion of contamination in plant tissue culture. Plant tissue culture, develop­ment, and biotechnology. 2011;(378):223–238

Chandra S, Bandopadhyay R, Kumar V, Chandra R. Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett. 2010;(32):1199– 1205

Chen XH, Koumoutsi A, Scholz R. Genome analysis of Bacillus amylolique­faciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Bio­technol. 2009;(140):27–37

Chowdhury SP, Dietel K, Randler M. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One. 2013;(8):7

Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. Biocontrol. 2013;(58):435–455

de Almeida CV, Andreote FD, Yara R, Tanaka FAO, Azevedo JL, de Almei­da M. Bacteriosomes in axenic plants: endophytes as stable endosymbionts. World J Microbiol Biotechnol. 2009;(25):1757–1764

Debois D, Jourdan E, Smargiasso N. Spatiotemporal monitoring of the anti­biome secreted by Bacillus biofilms on plant roots using MALDI mass spec­trometry imaging. Analyt Chem. 2014;(86):4431–4438

Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpcao LC, Araujo WL, Azevedo JL, Melo IS. Isolation of micropropagated straw­berry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol. 2009;(25):189–195

Digat B, Brochard P, Hermelin V, Tozet M. Interest of bacterized synthetic substrates MILCAP for in vitro culture. Acta Hortic. 1987;(212):375–378

Doornbos RF, van Loon LC, Bakker PA. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev. 2012;(32):227–243

Dunaeva S, Osledkin Y. Bacterial microorganisms associated with the plant tissue culture: identification and possible role. Agric Biol. 2015;(50):3–15

Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clement C, Fon­taine F, Ait Barka E. Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant–Microbe Int. 2012.

Fletcher J, Leach JE, Eversole K, Tauxe R. Human pathogens on plants: designing a multidisciplinary strategy for research. Phytopathology. 2013;(103):306–315

Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defense. Funct Ecol. 2013;(27):599–609

Goellner K, Conrath U. Priming: it’s all the world to induced disease resis­tance. Sustainable disease management in a European context. 2008;233–242

Gonzalez A.J., Larraburu E.E., Llorente B.E. Azospirillum brasilense in­creased salt tolerance of jojoba during in vitro rooting. Ind Crops Prod. 2015;(76):41–48

Gopinath S, Kumaran KS, Sundararaman M. A new initiative in microprop­agation: airborne bacterial volatiles modulate organogenesis and antioxidant activity in tobacco (Nicotiana tabacum L.) callus. In Vitro Cell Dev Biol. 2015;(51):514–523

Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B. Role of microor­ganisms in adaptation of agriculture crops to abiotic stresses. World J Micro­biol Biotechnol. 2011;(27):1231–1240

Guglielmetti S, Basilico R, Taverniti V, Arioli S, Piagnani C, Bernacchi A. Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hor­deum vulgare L.) under laboratory conditions. World J Microbiol Biotechnol. 2013;(29):2025–2032

Herman E. Toward control of micropropagation contamination. Agricell Rep. 1987;(2129):33–35

Herzner AM, Dischinger J, Szekat C. Expression of the lantibiotic mersaci­din in Bacillus amyloliquefaciens FZB42. PLoS One. 2011;(6):e22389

Idris EES, Iglesias DJ, Talon M. Tryptophan dependent production of in­dole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact. 2007;(20):619–626

Kaluzna M, Mikicinsk A, Sobiczewski P, Zawadzka M, Zenkteler E, Orli­kowska T. Detection, isolation, and preliminary characterization of bacteria contaminating plant tissue cultures. Acta Agrobot. 2013;(66):81–92

Kanchiswamy CN, Malnoy M, Mafei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci. 2015;(6):151

Krober M, Wibberg D, Grosch R. Effect of the strain Bacillus amyloliquefa­ciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbi­ol. 2014;(5):252

Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L. Identiication of IAA-pro­ducing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult. 2006;(85):353–359

Liu Z, Budiharjo A, Wang P. The highly modified microcin peptide plantazo­licin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. App Microbiol Biotechnol. 2013;(97):10081–90

Lucero ME, Unc A, Cooke P, Dowd S, Sun S. Endophyte microbiome diver­sity in micropropagated Atriplex canescens and Atriplex torreyi var griithsii. PLoS ONE. 2011;(6):e17693

Ludwig-Muller J. Plants and endophytes: equal partners in secondary metab­olite production? Biotechnol Lett. 2015;(37):1325–1334

Ludwig-Muller J. Bacteria and fungi controlling plant growth by manipu­lating auxin: balance between development and defense. J Plant Physiol. 2015;(172):4–12

Marino G, Altan AD, Biavati B. The effect of bacterial contamination on the growth and gas evolution of in vitro cultured apricot shoots. In Vitro Cell Dev Biol. 1996;(32):51–56

Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M. Charac­terization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol. 2012;(58):21–28

Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A. Increased drought stress resilience of maize through endophytic colonization by Bur­kholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot. 2014;(97):30–39

Norman DJ, Alvarez AM. Latent infections of in vitro anthurium caused by Xanthomonas campestris pv. Diefenbachiae. Plant Cell Tissue Organ Cult. 1994;(39):55–61

Nowak J. Benefits of in vitro “biotization” of plant tissue cultures with mi­crobial inoculants. In Vitro Cell Dev Biol. 1998;(34):122–130.

Nowak J, Bensalim S, Smith CD, Dunbar C, Asiedu SK, Madani A, Laza­rovits G, Northcott D, Sturz AV. Behaviour of plant material issued from in vitro tuberization. Potato Res. 1999;(42):505–519

Orlikowska T, Nowak K, Reed B. Bacteria in the plant tissue culture environ­ment. Plant Cell Tiss Organ Cult. 2017;(128):487–508

Owen D, Williams AP, Griith GW, Withers PJA. Use of commercial bio-in­oculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol. 2015;(86):41–54

Pacurar DI, Thordal-Christensen H, Pacurar ML, Pamil D, Botez C, Bellini C. Agrobacterium tumefaciens: From crown gall tumors to genetic transfor­mation. Physiol Mol Plant Pathol. 2011;(76):76–81

Panigrahi S, Aruna Lakshmi K, Venkateshwarulu Y, Umesh N. Biohardening of micropropagated plants with PGPR and endophytic bacteria enhances the protein content. Biotechnology and bioforensics, forensic and medical bioin­formatics. 2015;51 – 55

Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;(68):3795–3801

Pischke MS, Huttlin EL, Hegeman AD, Sussman MR. A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol. 2006;(140):1255–1278

Poppenberger B, Leonhardt W, Redl H. Latent persistence of Agrobac­terium vitis in micropropagated Vitis vinifera. VITIS-J Grapevine Res. 2002;(41):113–114

Quambusch M, Pirttila AM, Tejesvi MV, Winkelmann T, Bartsch M. Endo­phytic bacteria in plant tissue culture: differences between easy- and diffi­cult-to-propagate Prunus avium genotypes. Tree Physiol. 2014;(34):524–533

Raaijmakers J, De Bruin I, Nybroe O. Natural functions of cyclic lipopep­tides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 2010;(34):1037–1062

Rakotoniriana EF, Rafamantanana M. Study in vitro of the impact of en­dophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie Van Leeuwenhoek. 2013;(103):121–133

Reed BM, Mentzer J, Tanprasert P, Yu X. Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Pathogen and microbial contamination management in micropropagation. 1997;233– 236

Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F. Improved plant resis­tance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;(17):316–331

Saravanakumar D. Rhizobacterial ACC deaminase in plant growth and stress amelioration. Bacteria in agrobiology: stress management. 2012;187–210

Scherling C, Ulrich K, Ewald D, Weckwerth W. A metabolic signature of the beneicial interaction of the endophyte Paenibacillus sp. isolate and in vi­tro-grown poplar plants revealed by metabolomics. Mol Plant–Microbe In­teract MPMI. 2009;(22):1032–1037

Scholz R, Vater J, Budiharjo A. Amylocyclicin, a novel circular bac­teriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;(196):1842–1852

Shtenikov MD, Ostapchuk АМ, Vasylieva NY. Characteristics of genome of Bacillus velezensis ONU 553 strain isolated from the bottom sediments of the Black Sea. Microbiological journal. 2020;(82):3

Suada EP, Jasim B, Jimtha CJ, Gayatri GP, Radhakrishnan EK, Remakanthan A. Phytostimulatory and hardening periodreducing efects of plant-associated bacteria on micropropagated Musa acuminata cv. Grand Naine. In Vitro Cell Dev Biol. 2014;(51):682–687

Sunayana MR, Sasikala C, Ramana CV. Rhodestrin: A novel indole ter­penoid phytohormone from Rhodobacter sphaeroides. Biotechnol Lett. 2005;(27):1897–1900

Talboys PJ, Owen DW, Healey JR. Auxin secretion by Bacillus amylolique­faciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol. 2014;(14):51

Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Bail­lieul F, Clement C, Barka EA. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant–Microbe Interact MPMI. 2012;(25):241–249

Thomas J, Ajay D, Raj Kumar R, Mandal AKA. Influence of beneficial mi­croorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tissue Organ Cult. 2010;(101):365–370

Thomas P. Isolation of Bacillus pumilus from in vitro grapes as a long-term alcohol-surviving and rhizogenesis inducing covert endophyte. J Appl Mi­crobiol. 2004;(97):114–123

Thomas P. Intense association of non-culturable endophytic bacteria with antibiotic-cleansed in vitro watermelon and their activation in degenerating cultures. Plant Cell Rep. 2011;(30):2313–2325

Thomas P, Kumari S, Swarna GK, Gowda TKS. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte inter­action in vitro and in vivo. Can J Microbiol. 2007;(53):380–390

Tsao CW, Postman JD, Reed BM. Virus infections reduce in vitro multi­plication of “Malling Landmark” raspberry. In Vitro Cell Dev Biol Plant. 2000;(36):65–68

Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;(14):209

Ueno K, Cheplick S, Shetty K. Reduced hyperhydricity and enhanced growth of tissue culture-generated raspberry (Rubus spp.) clonal lines by Pseudomo­nas sp. isolated from oregano. Process Biochem. 1998;(33):441–445

Vacheron J, Desbrosses G, Boufaud ML, Touraine B, Moenne Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;(4):356

Vereecke D, Burssens S, Simon-Mateo C, Inze D, Van Montagu M, Goethals K, Jaziri M. The Rhodococcus fascians-plant interaction: morphological traits and biotechnological applications. Planta. 2000;(210):241–251

Wang B, Mei C, Seiler JR. Early growth promotion and leaf level physiology changes in Burkholderia phytofirmans strain PsJN inoculated switchgrass. Plant Physiol Biochem. 2015;(86):16–23

Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A. Com­plete genome sequence of the plant growth-promoting endophyte Burkholde­ria phytofirmans strain PsJN. J Bacteriol. 2011;(193):3383–3384

Xie X, Zhang H, Pare PW. Sustained growth promotion in arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav. 2009;(4):948–953

Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ. Unravel­ing root developmental programs initiated by beneficial Pseudomonas spp. Bacteria. Plant Physiol. 2013;(162):304–318

Zawadzka M, Trzcinski P, Nowak K, Orlikowska T. The impact of three bac­teria isolated from contaminated plant cultures on in vitro multiplication and rooting of microshoots of four ornamental plants. J Hortic Res. 2014;(21):41

Ziemienowicz A. Agrobacterium-mediated plant transformation: factors, ap­plications and recent advances. Biocatal Agric Biotechnol. 2014;(3):95–102

##submission.downloads##

Опубліковано

2020-12-23

Номер

Розділ

ОГЛЯДОВІ ТА ТЕОРЕТИЧНІ СТАТТІ