ПЕРСПЕКТИВИ ВИКОРИСТАННЯ БАКТЕРІЙ У КУЛЬТУРІ КЛІТИН ТА ТКАНИН РОСЛИН
DOI:
https://doi.org/10.18524/2307-4663.2020.3(50).214202Ключові слова:
взаємодія бактерій та рослин, мікроклональне розмноження, бактерії роду Bacillus, адаптація від умов in vitro до ex vitroАнотація
В огляді представлені дані сучасних джерел літератури про взаємодію бактерій та рослин. Наведено особливості співіснування рослин і епіфітних та ендофітних мікроорганізмів у природних умовах і в культурі in vitro. Освітлено переваги взаємодії рослин і бактерій та проблеми відсутності мікробіоти у саджанців рослин при мікроклональному розмноженні. Детально описано досвід використання мікроорганізмів у культурі клітин та тканин рослин. Описано процеси інокуляції бактерій на мікроклони рослин. Також розглянута культура рослин in vitro як модель взаємодії бактерій та рослин. Освітлено ріст-стимулювальні та антагоністичні властивості бактерій роду Bacillus, що потенційно можуть мати корисний вплив на рослини під час адаптації до умов ex vitro. Розглянуто перспективи використання бактерій роду Bacillus на етапі акліматизації рослин до умов ex vitro. Наведено приклади успішного використання бактерій роду Bacillus для стимуляції росту рослин та для захисту від патогенів.
Посилання
Aballay E, Martensson A, Persson P. Screening of rhizosphere bacteria from grapevine for their suppressive efect on Xiphinema index Thorne & Allen on in vitro grape plants. Plant Soil. 2011;(347):313–325
Abreu-Tarazi MF, Navarrete AA, Andreote FD, Almeida CV, Tsai SM, Almeida M. Endophytic bacteria in long-term in vitro cultivated “axenic” pineapple microplants revealed by PCR–DGGE. World J Microbiol Biotechnol. 2010; (26):555–560
Ali S, Duan J, Charles TC, Glick BR. A bioinformatics approach to the determination of genes involved in endophytic behavior in Burkholderia spp. J Theor Biol. 2014;(343):193–198
Andreote FD, da Rocha UN, Araujo WL, Azevedo JL, van Overbeek LS. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Van Leeuwenhoek. 2010;(97):389–399
Ardanov P, Ovcharenko L, Zaets I, Kozyrovska N, Pirttila A. Endophytic bacteria enhancing growth and disease resistance of potato (Solanum tuberosum L.). Biol Control. 2011;(56):43–49
Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Pirttila AM. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS ONE. 2012; (7):46802
Arkhipova TN, Prinsen E, Veselov SU, Martinenko EV, Melentiev AI, Kudoyarova GR. Cytokinin producing bacteria enhance plant growth in drying soil. Plant Soil. 2007;(292):305–315
Balla I, Vertesy J, Koves-Pechy K, Voros I, Bujtas Z, Biro B. Acclimation results of micropropagated black locust (Robina pseudoacacia L.) improved by symbiotic micro-organisms .Plant Cell Tissue Organ Cult. 1998;(52):113– 115
Barka EA, Nowak J, Clement S. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growthpromoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Env Microbiol. 2006
Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil. 2014;(378):1–33
Bensalim S, Nowak J, Asiedu SK. A plant growth promoting rhizobacterium and temperature efects on performance of 18 clones of potato. Am J Potato Res. 1998
Borriss R. Comparative analysis of the complete genome sequence of the plant growthpromoting bacterium Bacillus amyloliquefaciens FZB42. Molecular microbial ecology of the rhizosphere. 2013;(2):883–898
Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents. Bacteria in agrobiology: plant growth responses. 2011; 41 – 76
Bottini R, Cassan F, Piccoli P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol. 2004;(65):497–503
Budiharjo A, Chowdhury SP, Dietel K. Transposon mutagenesis of the plantassociated Bacillus amyloliquefaciens ssp. plantarum FZB42 revealed that the nfrA and the RBAM17410 genes are involved in plant-microbe interactions. PLoS One. 2014;(9):5
Burlak OP, de Vera JP, Yatsenko V, Kozyrovska NO. Putative mechanisms of bacterial efects on plant photosystem under stress. Biopolym Cell. 2013;(29):3–10
Cassells AC. Detection and elimination of microbial endophytes and prevention of contamination in plant tissue culture. Plant tissue culture, development, and biotechnology. 2011;(378):223–238
Chandra S, Bandopadhyay R, Kumar V, Chandra R. Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnol Lett. 2010;(32):1199– 1205
Chen XH, Koumoutsi A, Scholz R. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 2009;(140):27–37
Chowdhury SP, Dietel K, Randler M. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS One. 2013;(8):7
Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. Biocontrol. 2013;(58):435–455
de Almeida CV, Andreote FD, Yara R, Tanaka FAO, Azevedo JL, de Almeida M. Bacteriosomes in axenic plants: endophytes as stable endosymbionts. World J Microbiol Biotechnol. 2009;(25):1757–1764
Debois D, Jourdan E, Smargiasso N. Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Analyt Chem. 2014;(86):4431–4438
Dias ACF, Costa FEC, Andreote FD, Lacava PT, Teixeira MA, Assumpcao LC, Araujo WL, Azevedo JL, Melo IS. Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World J Microbiol Biotechnol. 2009;(25):189–195
Digat B, Brochard P, Hermelin V, Tozet M. Interest of bacterized synthetic substrates MILCAP for in vitro culture. Acta Hortic. 1987;(212):375–378
Doornbos RF, van Loon LC, Bakker PA. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev. 2012;(32):227–243
Dunaeva S, Osledkin Y. Bacterial microorganisms associated with the plant tissue culture: identification and possible role. Agric Biol. 2015;(50):3–15
Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clement C, Fontaine F, Ait Barka E. Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant–Microbe Int. 2012.
Fletcher J, Leach JE, Eversole K, Tauxe R. Human pathogens on plants: designing a multidisciplinary strategy for research. Phytopathology. 2013;(103):306–315
Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defense. Funct Ecol. 2013;(27):599–609
Goellner K, Conrath U. Priming: it’s all the world to induced disease resistance. Sustainable disease management in a European context. 2008;233–242
Gonzalez A.J., Larraburu E.E., Llorente B.E. Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Ind Crops Prod. 2015;(76):41–48
Gopinath S, Kumaran KS, Sundararaman M. A new initiative in micropropagation: airborne bacterial volatiles modulate organogenesis and antioxidant activity in tobacco (Nicotiana tabacum L.) callus. In Vitro Cell Dev Biol. 2015;(51):514–523
Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol. 2011;(27):1231–1240
Guglielmetti S, Basilico R, Taverniti V, Arioli S, Piagnani C, Bernacchi A. Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hordeum vulgare L.) under laboratory conditions. World J Microbiol Biotechnol. 2013;(29):2025–2032
Herman E. Toward control of micropropagation contamination. Agricell Rep. 1987;(2129):33–35
Herzner AM, Dischinger J, Szekat C. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PLoS One. 2011;(6):e22389
Idris EES, Iglesias DJ, Talon M. Tryptophan dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant Microbe Interact. 2007;(20):619–626
Kaluzna M, Mikicinsk A, Sobiczewski P, Zawadzka M, Zenkteler E, Orlikowska T. Detection, isolation, and preliminary characterization of bacteria contaminating plant tissue cultures. Acta Agrobot. 2013;(66):81–92
Kanchiswamy CN, Malnoy M, Mafei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci. 2015;(6):151
Krober M, Wibberg D, Grosch R. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole metagenome sequencing. Front Microbiol. 2014;(5):252
Lata H, Li XC, Silva B, Moraes RM, Halda-Alija L. Identiication of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult. 2006;(85):353–359
Liu Z, Budiharjo A, Wang P. The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42. App Microbiol Biotechnol. 2013;(97):10081–90
Lucero ME, Unc A, Cooke P, Dowd S, Sun S. Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griithsii. PLoS ONE. 2011;(6):e17693
Ludwig-Muller J. Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett. 2015;(37):1325–1334
Ludwig-Muller J. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J Plant Physiol. 2015;(172):4–12
Marino G, Altan AD, Biavati B. The effect of bacterial contamination on the growth and gas evolution of in vitro cultured apricot shoots. In Vitro Cell Dev Biol. 1996;(32):51–56
Montanez A, Blanco AR, Barlocco C, Beracochea M, Sicardi M. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol. 2012;(58):21–28
Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot. 2014;(97):30–39
Norman DJ, Alvarez AM. Latent infections of in vitro anthurium caused by Xanthomonas campestris pv. Diefenbachiae. Plant Cell Tissue Organ Cult. 1994;(39):55–61
Nowak J. Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol. 1998;(34):122–130.
Nowak J, Bensalim S, Smith CD, Dunbar C, Asiedu SK, Madani A, Lazarovits G, Northcott D, Sturz AV. Behaviour of plant material issued from in vitro tuberization. Potato Res. 1999;(42):505–519
Orlikowska T, Nowak K, Reed B. Bacteria in the plant tissue culture environment. Plant Cell Tiss Organ Cult. 2017;(128):487–508
Owen D, Williams AP, Griith GW, Withers PJA. Use of commercial bio-inoculants to increase agricultural production through improved phosphorous acquisition. Appl Soil Ecol. 2015;(86):41–54
Pacurar DI, Thordal-Christensen H, Pacurar ML, Pamil D, Botez C, Bellini C. Agrobacterium tumefaciens: From crown gall tumors to genetic transformation. Physiol Mol Plant Pathol. 2011;(76):76–81
Panigrahi S, Aruna Lakshmi K, Venkateshwarulu Y, Umesh N. Biohardening of micropropagated plants with PGPR and endophytic bacteria enhances the protein content. Biotechnology and bioforensics, forensic and medical bioinformatics. 2015;51 – 55
Patten CL, Glick BR. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol. 2002;(68):3795–3801
Pischke MS, Huttlin EL, Hegeman AD, Sussman MR. A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol. 2006;(140):1255–1278
Poppenberger B, Leonhardt W, Redl H. Latent persistence of Agrobacterium vitis in micropropagated Vitis vinifera. VITIS-J Grapevine Res. 2002;(41):113–114
Quambusch M, Pirttila AM, Tejesvi MV, Winkelmann T, Bartsch M. Endophytic bacteria in plant tissue culture: differences between easy- and difficult-to-propagate Prunus avium genotypes. Tree Physiol. 2014;(34):524–533
Raaijmakers J, De Bruin I, Nybroe O. Natural functions of cyclic lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev. 2010;(34):1037–1062
Rakotoniriana EF, Rafamantanana M. Study in vitro of the impact of endophytic bacteria isolated from Centella asiatica on the disease incidence caused by the hemibiotrophic fungus Colletotrichum higginsianum. Antonie Van Leeuwenhoek. 2013;(103):121–133
Reed BM, Mentzer J, Tanprasert P, Yu X. Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Pathogen and microbial contamination management in micropropagation. 1997;233– 236
Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;(17):316–331
Saravanakumar D. Rhizobacterial ACC deaminase in plant growth and stress amelioration. Bacteria in agrobiology: stress management. 2012;187–210
Scherling C, Ulrich K, Ewald D, Weckwerth W. A metabolic signature of the beneicial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. Mol Plant–Microbe Interact MPMI. 2009;(22):1032–1037
Scholz R, Vater J, Budiharjo A. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol. 2014;(196):1842–1852
Shtenikov MD, Ostapchuk АМ, Vasylieva NY. Characteristics of genome of Bacillus velezensis ONU 553 strain isolated from the bottom sediments of the Black Sea. Microbiological journal. 2020;(82):3
Suada EP, Jasim B, Jimtha CJ, Gayatri GP, Radhakrishnan EK, Remakanthan A. Phytostimulatory and hardening periodreducing efects of plant-associated bacteria on micropropagated Musa acuminata cv. Grand Naine. In Vitro Cell Dev Biol. 2014;(51):682–687
Sunayana MR, Sasikala C, Ramana CV. Rhodestrin: A novel indole terpenoid phytohormone from Rhodobacter sphaeroides. Biotechnol Lett. 2005;(27):1897–1900
Talboys PJ, Owen DW, Healey JR. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol. 2014;(14):51
Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clement C, Barka EA. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant–Microbe Interact MPMI. 2012;(25):241–249
Thomas J, Ajay D, Raj Kumar R, Mandal AKA. Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tissue Organ Cult. 2010;(101):365–370
Thomas P. Isolation of Bacillus pumilus from in vitro grapes as a long-term alcohol-surviving and rhizogenesis inducing covert endophyte. J Appl Microbiol. 2004;(97):114–123
Thomas P. Intense association of non-culturable endophytic bacteria with antibiotic-cleansed in vitro watermelon and their activation in degenerating cultures. Plant Cell Rep. 2011;(30):2313–2325
Thomas P, Kumari S, Swarna GK, Gowda TKS. Papaya shoot tip associated endophytic bacteria isolated from in vitro cultures and host-endophyte interaction in vitro and in vivo. Can J Microbiol. 2007;(53):380–390
Tsao CW, Postman JD, Reed BM. Virus infections reduce in vitro multiplication of “Malling Landmark” raspberry. In Vitro Cell Dev Biol Plant. 2000;(36):65–68
Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;(14):209
Ueno K, Cheplick S, Shetty K. Reduced hyperhydricity and enhanced growth of tissue culture-generated raspberry (Rubus spp.) clonal lines by Pseudomonas sp. isolated from oregano. Process Biochem. 1998;(33):441–445
Vacheron J, Desbrosses G, Boufaud ML, Touraine B, Moenne Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C. Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci. 2013;(4):356
Vereecke D, Burssens S, Simon-Mateo C, Inze D, Van Montagu M, Goethals K, Jaziri M. The Rhodococcus fascians-plant interaction: morphological traits and biotechnological applications. Planta. 2000;(210):241–251
Wang B, Mei C, Seiler JR. Early growth promotion and leaf level physiology changes in Burkholderia phytofirmans strain PsJN inoculated switchgrass. Plant Physiol Biochem. 2015;(86):16–23
Weilharter A, Mitter B, Shin MV, Chain PSG, Nowak J, Sessitsch A. Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN. J Bacteriol. 2011;(193):3383–3384
Xie X, Zhang H, Pare PW. Sustained growth promotion in arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal Behav. 2009;(4):948–953
Zamioudis C, Mastranesti P, Dhonukshe P, Blilou I, Pieterse CMJ. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. Bacteria. Plant Physiol. 2013;(162):304–318
Zawadzka M, Trzcinski P, Nowak K, Orlikowska T. The impact of three bacteria isolated from contaminated plant cultures on in vitro multiplication and rooting of microshoots of four ornamental plants. J Hortic Res. 2014;(21):41
Ziemienowicz A. Agrobacterium-mediated plant transformation: factors, applications and recent advances. Biocatal Agric Biotechnol. 2014;(3):95–102
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2020 Мікробіологія і біотехнологія
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Автор передає журналу (університету) на безоплатній основі невиключні права на використання статті (на весь строк дії авторського права починаючи з моменту публікації, розміщення статті на веб-сторінці журналу, в репозитарії відкритого доступу) без одержання прибутку; на відтворення статті чи її частин в електронній формі (включаючи цифрову); виготовлення ії електронних копій для постійного архівного зберігання; виготовлення електронних копій статті для некомерційного розповсюдження; внесення статті до бази даних репозитарію; надання електронних копій статті в доступі мережі інтернет.
Автор гарантує, що у статті не використовувалися статті або авторські права, які належать третім особам; гарантує, що на момент розміщення статті на веб-сторінці, в репозитарії ОНУ лише йому належать виключні майнові права на статтю, що розміщується; майнові права на статтю ні повністю, ні в частині нікому не передано (не відчуджено), майнові права на статтю ні повністю, ні в частині не є предметом застави, судового спору або претензій з боку третіх осіб.
Автор зберігає за собою право використовувати самостійно чи передавати права на використання статті третім особам.
Автор надає журналу право на використання статті такими способами:
переробляти, адаптувати або іншим чином змінювати її за погодженням з автором; перекладати статтю у випадку, коли стаття викладена мовою іншою, ніж мова, якою передбачена публікація у виданні. Якщо журнал виявить бажання використовувати статтю іншими способами: перекладати, розміщувати повністю або частково у мережі інтернет, публікувати статтю в інших, в тому числі іноземних виданнях, включати статтю як складову частину до інших збірників, антологій, енциклопедій тощо, умови оформлюються додатковою угодою.
Автор підтверджує, що він є автором (співавтором) цієї статті; авторські права на дану статтю не передані іншому видавцю; дана стаття не була раніше опублікована у будь-якому іншому виданні до публікації її журналом.
Публікація праць в Журналі здійснюється на некомерційній основі. Комісійна плата за оформлення статті не стягується.