МІКРООРГАНІЗМИ МОРСЬКИХ ХОЛОДНИХ ПРОСОЧУВАНЬ ВУГЛЕВОДНІВ
DOI:
https://doi.org/10.18524/2307-4663.2024.2(61).310552Ключові слова:
мікробне біорізноманіття, метаногенез, метанотрофи, вуглеводневі просочування, окиснення вуглеводнів, сульфатредукціяАнотація
Морські вуглеводневі просочування (сипи) завдяки своїм унікальним геофізичним та геохімічним характеристикам формують унікальні умови для розвитку специфічних мікробних спільнот, різноманітна та взаємопов’язана метаболічна діяльність яких лежить в основі глобальних екологічних процесів. В короткому огляді розглянуті геофізичні та хімічні передумови формування сипів та вуглеводневих флюїдів – джерел енергії та субстратів для метаболічних процесів, що опосередковані мікроорганізмами, які існують в даних екологічних нішах. Наведено інформацію про різноманітність мікроорганізмів в холодних вуглеводневих просочуваннях, їх метаболічний потенціал в умовах динамічного розвитку середовища.
Посилання
Abrams MA, Dahdah N. Surface sediment hydrocarbons as indicators of sub-surface hydrocarbons: field calibration of existing and new surface geochemistry methods in the Marco Polo area, Gulf of Mexico. AAPG Bulletin. 2011; 95(11):1907-1935. https://doi.org/10.1306/03211110130
Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, Eickhorst T, Oni OE, Richter-Heitmann T, Schnakenberg A, Taubner H, Wunder L, Yin X, Zhu Q, Hinrichs KU, Kasten S, Friedrich MW. Rates and Microbial Players of Iron-Driven Anaerobic Oxidation of Methane in Methanic Marine Sediments. Front Microbiol. 2020;10:3041. https://doi.org/10.3389/fmicb.2019.03041
Bertics VJ, Loscher CR, Salonen I, Dale AW, Schmitz RA, Treude T. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernförde Bay, Baltic Sea. Biogeosciences. 2013; 10:1243–58. https://doi.org/10.5194/bg-10-1243-2013
Beulig F, Røy H, McGlynn SE, Jørgensen BB. Cryptic CH4 cycling in the sulfate–methane transition of marine sediments apparently mediated by ANME-1 archaea. The ISME Journal. 2019; 13:250–262. https://doi.org/10.1038/s41396-018-0273-z
Bhattarai S, Cassarini C, Lens PNL. Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Microbiol Mol Biol Rev. 2019; 83:10.1128/mmbr.00074-18. https://doi.org/10.1128/mmbr.00074-18
Boetius A, Wenzhöfer F. Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Geosci. 2013; 6(9):725–34. https://doi.org/10.1038/ngeo1926
Bojanova DP, De Anda VY, Haghnegahdar MA, Teske AP, Ash JL, Young ED, Baker BJ, LaRowe DE, Amend JP. Well-hidden methanogenesis in deep, organic-rich sediments of Guaymas Basin. ISME J. 2023; 17(11):1828-1838. https://doi.org/10.1038/s41396-023-01485-y
Borrel G, Adam PS, McKay JJ, Chen L-X, Sierra-Garcia IN et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol. 2019; 4(4):603–13. https://doi.org/10.1038/s41564-019-0363-3
Bose A, Rogers DR, Adams MM, Joye SB, Girguis PR. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction in seep sediments. Front Microbiol. 2013; 4:386. https://doi.org/10.3389/fmicb.2013.00386
Bowles MW, Samarkin VA, Bowles KML, Joye SB. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments in ex situ incubations. Geochim Cosmochim Acta. 2010; 75(2):500–519. https://doi.org/10.1016/j.gca.2010.09.043
Bowles MW, Hunter KS, Samarkin V, Joye SB. Patterns and variability in geochemical signatures and microbial activity within and between diverse cold seep habitats along the lower continental slope, Northern Gulf of Mexico. Deep Sea Res II. 2016; 129:31–40. https://doi.org/10.1016/j.dsr2.2016.02.011
Brun J-P, Fort X. Growth of continental shelves at salt margins. Front. Earth Sci. 2018; 6:209. https://doi.org/10.3389/feart.2018.00209
Chen J, Li Y, Zhong C, Xu Z, Lu G, Jing H, Liu H. Genomic Insights into Niche Partitioning across Sediment Depth among Anaerobic Methane-Oxidizing Archaea in Global Methane Seeps. mSystems. 2023; 8(2):e0117922. https://doi.org/10.1128/msystems.01179-22
Chen Y, Wu N, Liu C, Mi T, Li J, He X, Li S, Sun Z, Zhen Y. Methanogenesis pathways of methanogens and their responses to substrates and temperature in sediments from the South Yellow Sea. Sci Total Environ. 2022; 815:152645. https://doi.org/10.1016/j.scitotenv.2021.152645
Dekas AE, Poretsky RS, Orphan VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science. 2009; 326(5951):422–426. https://doi.org/10.1126/science.1178223
Dekas AE, Chadwick GL, Bowles MW, Joye SB, Orphan VJ. Spatial distribution of nitrogen fixation in methane seep sediment and the role of the ANME archaea. Environ Microbiol. 2014; 16(10):3012–29. https://doi.org/10.1111/1462-2920.12247
Dombrowski N, Teske AP, Baker BJ. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat Commun. 2018; 9(1):4999. https://doi.org/10.1038/s41467-018-07418-0
Dong X, Greening C, Rattray JE, Chakraborty A, Chuvochina M et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat Commun. 2019; 10(1):1816. https://doi.org/10.1038/s41467-019-09747-0
Dowell F et al. Microbial communities in methane- and short chain alkanerich hydrothermal sediments of Guaymas Basin. Front Microbiol. 2016; 7:17. https://doi.org/10.3389/fmicb.2016.00017
Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008; 6(10):725–740. https://doi.org/10.1038/nrmicro1992
Egger M, Kraal P, Jilbert T, Sulu-Gambari F, Sapart CJ, Röckmann T, Slomp CP. Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea. Biogeosciences. 2016; 13:5333–5355. https://doi.org/10.5194/bg-13-5333-2016
Egger M, Hagens M, Sapart CJ, Dijkstra N, Van Helmond NAGM, Mogollón JM et al. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim Cosmochim Acta. – 2017; 207:256–276. https://doi.org/10.1016/j.gca.2017.03.019
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature. 2010; 464(7288):543–548. https://doi.org/10.1038/nature08883
Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science. 2015; 350(6259):434–38. https://doi.org/10.1126/science.aac7745
Farhan Ul Haque M, Crombie AT, Ensminger SA, Baciu С, Murrell JC. Facultative methanotrophs are abundant at terrestrial natural gas seeps. Microbiome. 2018; 6:118. https://doi.org/10.1186/s40168-018-0500-x
Farhan Ul Haque M, Xu H-J, Murrell JC, Crombie A. Facultative methanotrophs – diversity, genetics, molecular ecology and biotechnological potential: a mini-review. Microbiology. 2020; 166:894–908. https://doi.org/10.1099/mic.0.000977
Grünke S, Lichtschlag A, de Beer D, Felden J, Ramette A et al. Mats of psychrophilic thiotrophic bacteria associated with cold seeps of the Barents Sea. Biogeosciences. 2012; 9:2947–2960. https://doi.org/10.5194/bg-9-2947-2012
Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature. 2013; 500(7464):567–570. https://doi.org/10.1038/nature12375
Hawley ER, Piao H, Scott NM, Malfatti S, Pagani I et al. Metagenomic analysis of microbial consortium from natural crude oil that seeps into the marine ecosystem offshore Southern California. Stand Genom Sci. 2014; 9(3):1259–1274. https://doi.org/10.4056/sigs.5029016
Hinkle JE, Mara P, Beaudoin DJ, Edgcomb VP, Teske AP. A PCR-Based Survey of Methane-Cycling Archaea in Methane-Soaked Subsurface Sediments of Guaymas Basin, Gulf of California. Microorganisms. 2023; 11(12):2956. https://doi.org/10.3390/microorganisms11122956
Jaekel U, Musat N, Adam B, Kuypers M, Grundmann1 O, Musat F. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. The ISME Journal. 2013; 7(5):885–895. https://doi.org/10.1038/ismej.2012.159
Jaekel U, Zedelius J, Wilkes H, Musat F. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Front Microbiol. 2015; 6:116. https://doi.org/10.3389/fmicb.2015.00116
Jones DS, Flood BE, Bailey JE. Metatranscriptomic insights into polyphosphate metabolism in marine sediments. ISME J. 2015; 10:1015–1019. https://doi.org/10.1038/ismej.2015.169
Joye SB, Bowles MW, Samarkin VA, Hunter KS, Niemann H. Biogeochemical signatures and microbial activity of different cold seep habitats along the Gulf of Mexico lower slope. Deep Sea Res II. 2010; 57(21-23):1990–2001. https://doi.org/10.1016/j.dsr2.2010.06.001
Joye SB, Kleindienst S. Hydrocarbon seep ecosystems. In: Life in Extreme Environments Eds Kallmeyer J. DeGruyter Publ., Berlin, 2017:33–52. https://doi.org/10.1515/9783110493672-002
Joye SB. The Geology and Biogeochemistry of Hydrocarbon Seeps. Annual Review of Earth and Planetary Sciences. 2020; 48:205-231. https://doi.org/10.1146/annurev-earth-063016-020052
Kappler A, Bryce C. Cryptic biogeochemical cycles: unraveling hidden redox reactions. Environ. Microbiol. 2017; 19(3):842–46. https://doi.org/10.1111/1462-2920.13687
Kennicutt MC. Oil and gas seeps in the Gulf of Mexico. In: Habitats and Biota of the Gulf of Mexico: Before the Deepwater Horizon Oil Eds Spill C Ward. New York: Springer, 2017:275–358. https://doi.org/10.1007/978-1-4939-3447-8_5
Knittel K, Lösekann T, Boetius A, Kort R, Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol. 2005; 71(1):467–479. https://doi.org/10.1128/AEM.71.1.467-479.2005
Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol. 2009; 63:311–334. https://doi.org10.1146/annurev.micro.61.080706.093130
Kramer KV, Shedd WW. A 1.4-billion-pixel map of the Gulf of Mexico seafloor. EOS Trans AGU. 2017; 98(8):101029. https://doi.org/10.1029/2017EO073557
Kurth JM, Huub JM, den Camp O, Welte CU Several ways one goal—methanogenesis from unconventional substrates. Appl Microbiol and Biotech. 2020; 104:6839–6854. https://doi.org/10.1007/s00253-020-10724-7
Liang L, Wang Y, Sivan O, Wang F. Metal-dependent anaerobic methane oxidation in marine sediment: Insights from marine settings and other systems. Sci China Life Sci. 2019;62(10):1287-1295. https://doi.org/10.1007/s11427-018-9554-5
Litchschlag A, Felden J, Bruchert V, Boetius A, de Beer D. Geochemical processes and chemosynthetic primary production in different thiotrophic mats of the Håkon Mosby Mud Volcano (Barents Sea). Limnol Oceanogr. 2010; 55(2):931–949. https://doi.org/10.4319/lo.2010.55.2.0931
Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol. 2018;28(13):R727-R732. https://doi.org/10.1016/j.cub.2018.05.021
Marlow JJ, Steele JA, Ziebis W, Thurber AR, Levin LA, Orphan VJ. Carbonate-hosted methanotrophy represents an unrecognized methane sink in the deep sea. Nat Commun. 2014; 5:5094. https://doi.org/10.1038/ncomms6094
Miyazaki J, Higa R, Toki T, Ashi J, Tsunogai U et al. Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the number 8 Kumano Knoll in the Kumano Basin, off-shore of Japan. Appl Environ Microbiol. 2009; 75(22):7153–62. https://doi.org/10.1128/AEM.01184-09
Nie WB, Ding J, Xie GJ, Tan X, Lu Y, Peng L, Liu BF, Xing DF, Yuan Z, Ren N. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. Water Res. 2021; 194:116928. https://doi.org/10.1016/j.watres.2021.116928
Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter M, Klages M, Foucher JP, Boetius A. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature. 2006; 443(7113):854–858. https://doi.org/10.1038/nature05227
Novikova SA, Shnyukov YF, Sokol EV, Kozmenko OA, Semenova DV, Kutny VA. A methane-derived carbonate build-up at a cold seep on the Crimean slope, north-western Black Sea. Mar Geol. 2015; 363(2):160–173. https://doi.org/10.1016/j.mar-geo.2015.02.008
Orcutt BN, Joye SB, Kleindienst S, Knittel K, Ramette A, Reitz A, Samarkin V, Treude T, Boetius A. Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep Sea Res Part II: Top Stud Oceanogr. 2010; 57(21-23):2008–2021. https://doi.org/10.1016/j.dsr2.2010.05.014
Orcutt BN, Lapham LL, Delaney J, Sarode N, Marshall KS et al. Microbial response to oil enrichment in Gulf of Mexico sediment measured using a novel long-term benthic lander system. Elem Sci Anthr. 2017; 5(3):18. https://doi.org/10.1525/elementa.129
Pohlman JW, Bauer JE, Waite WF, Osburn CL, Chapman NR. Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans. Nat Geosci. 2011; 4:37–41. https://doi.org/10.1038/ngeo1016
Ristova PP, Wenzhofer F, Ramette A, Felden J, Boetius A. Spatial scales of bacterial community diversity at cold seeps (Eastern Mediterranean Sea). ISME J. 2014; 9(6):1306–1318. https://doi.org/10.1038/ismej.2014.217
Roberts HH, Hardage BA, Shedd WW, Hunt J Jr. Seafloor reflectivity – an important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. Lead Edge. 2006; 25(5):620–628. https://doi.org/10.1190/1.2202667
Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. PNAS. 2015; 112(13):4015–4020. https://doi.org/10.1073/pnas.1421865112
Ruff SE, Felden J, Gruber-Vodicka HR, Marcon Y, Knittel K et al. In situ development of a methanotrophic microbiome in deep-sea sediments. ISME J. 2018; 13(1):197–213. https://doi.org/10.1038/s41396-018-0263-1
Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B. The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature. 2010; 465(7298):606–608. https://doi.org/10.1038/nature09015
Semler AC, Fortney JL, Fulweiler RW, Dekas AE. Cold Seeps on the Passive Northern U.S. Atlantic Margin Host Globally Representative Members of the Seep Microbiome with Locally Dominant Strains of Archaea. Appl Environ Microbiol. 2022; 88(11):e0046822. https://doi.org/10.1128/aem.00468-22
Singh R, Guzman MS, Bose A. Anaerobic oxidation of ethane, propane, and butane by marine microbes: a mini review. Front Microbiol. 2017; 8:2056. https://doi.org/10.3389/fmicb.2017.02056
Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. Int J Earth Sci. 2014; 103:1889–1916. https://doi.org/10.1007/s00531-014-1010-0
Treude T, Knittel K, Blumenberg M, Seifert R, Boetius A. Subsurface microbial methanotrophic mats in the Black Sea. Appl Environ Microbiol. 2005; 71(10):6375–6378. https://doi.org/10.1128/AEM.71.10.6375-6378.2005
Vallino J, Algar CK. The thermodynamics of marine biogeochemical cycles: Lotka revisited. Annu Rev Mar Sci. 2016; 8:333–356. https://doi.org/10.1146/annurev-marine-010814-015843
Vigneron A, Alsop EB, Cruaud P, Pilibert G, King B et al. Comparative metagenomics of hydrocarbon and methane seeps of the Gulf of Mexico. Sci Rep. 2017; 7(1):16015. https://doi.org/10.1038/s41598-017-16375-5
Vigneron A, L’Haridon S, Godfroy A, Roussel EG, Cragg BA et al. Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps. Appl Environ Microbiol. 2015; 81(10):3451–59. https://doi.org/10.1128/AEM.00147-15
Wang Y, Wegener G, Hou J, Wang F, Xiao X. Expanding anaerobic alkane metabolism in the domain of Archaea. Nat Microbiol. 2019; 4(4):595–602. https://doi.org/10.1038/s41564-019-0364-2
Xin Y, Wu N, Sun Z, Wang H, Chen Y, Xu C, Geng W, Cao H, Zhang X, Zhai B, Yan D. Methane seepage intensity distinguish microbial communities in sediments at the Mid-Okinawa Trough. Sci Total Environ. 2022; 851(2):158213. https://doi.org/10.1016/j.scitotenv.2022.158213
Yin X, Zhou G, Wang H, Han D, Maeke M, Richter-Heitmann T, Wunder LC, Aromokeye DA, Zhu QZ, Nimzyk R, Elvert M, Friedrich MW. Unexpected carbon utilization activity of sulfate-reducing microorganisms in temperate and permanently cold marine sediments. ISME J. 2024; 18(1):wrad014. https://doi.org/10.1093/ismejo/wrad014
Zhao R., Summers Z.M., Christman G.D., Yoshimura K.M., Biddle J.F. Metagenomic views of microbial dynamics influenced by hydrocarbon seepage in sediments of the Gulf of Mexico. Scientific Reports. 2020; 10:5772 https://doi.org/10.1038/s41598-020-62840-z
Zhuang G-C, Montgomery A, Sibert RJ, Rogener M-K, Samarkin VA, Joye SB. Effects of pressure, methane concentration, sulfate reduction activity, and temperature on methane production in surface sediments of the Gulf of Mexico. Limnol Oceanogr. 2018; 63(5):2080–2092. https://doi.org/10.1002/lno.10925
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2024 О. В. Сащук, Т. В. Гудзенко, В. О. Іваниця
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Автор передає журналу (університету) на безоплатній основі невиключні права на використання статті (на весь строк дії авторського права починаючи з моменту публікації, розміщення статті на веб-сторінці журналу, в репозитарії відкритого доступу) без одержання прибутку; на відтворення статті чи її частин в електронній формі (включаючи цифрову); виготовлення ії електронних копій для постійного архівного зберігання; виготовлення електронних копій статті для некомерційного розповсюдження; внесення статті до бази даних репозитарію; надання електронних копій статті в доступі мережі інтернет.
Автор гарантує, що у статті не використовувалися статті або авторські права, які належать третім особам; гарантує, що на момент розміщення статті на веб-сторінці, в репозитарії ОНУ лише йому належать виключні майнові права на статтю, що розміщується; майнові права на статтю ні повністю, ні в частині нікому не передано (не відчуджено), майнові права на статтю ні повністю, ні в частині не є предметом застави, судового спору або претензій з боку третіх осіб.
Автор зберігає за собою право використовувати самостійно чи передавати права на використання статті третім особам.
Автор надає журналу право на використання статті такими способами:
переробляти, адаптувати або іншим чином змінювати її за погодженням з автором; перекладати статтю у випадку, коли стаття викладена мовою іншою, ніж мова, якою передбачена публікація у виданні. Якщо журнал виявить бажання використовувати статтю іншими способами: перекладати, розміщувати повністю або частково у мережі інтернет, публікувати статтю в інших, в тому числі іноземних виданнях, включати статтю як складову частину до інших збірників, антологій, енциклопедій тощо, умови оформлюються додатковою угодою.
Автор підтверджує, що він є автором (співавтором) цієї статті; авторські права на дану статтю не передані іншому видавцю; дана стаття не була раніше опублікована у будь-якому іншому виданні до публікації її журналом.
Публікація праць в Журналі здійснюється на некомерційній основі. Комісійна плата за оформлення статті не стягується.