ВИКОРИСТАННЯ МІКРООРГАНІЗМІВ У БІОРЕМЕДІАЦІЇ ГРУНТІВ, ЗАБРУДНЕНИХ ВНАСЛІДОК БОЙОВИХ ДІЙ

Автор(и)

  • М. Б. Галкін Одеський національний університет імені І. І. Мечникова, Україна https://orcid.org/0000-0002-4957-7148
  • І. В. Страшнова Одеський національний університет імені І. І. Мечникова, Україна https://orcid.org/0000-0002-4264-466X
  • А. В. Андрющенко Одеський національний університет імені І. І. Мечникова, Україна

DOI:

https://doi.org/10.18524/2307-4663.2024.2(61).310553

Ключові слова:

забруднення ґрунту внаслідок бойових дій, біоремедіація, аеробні та анаеробні деструктори, виведення важких металів з ґрунту

Анотація

Внаслідок бойових дій у ґрунти потрапляють речовини з вибухівки та механізмів вогнепальної зброї, паливно-мастильні матеріали і важкі метали, які несуть згубний вплив на екосистеми. У статті проаналізовано основні способи біоремедіації такого ґрунту. Використання шламових реакторів, земельної обробки, компостування, біостимуляції, біозбагачення та імобілізованих мікроорганізмів дозволяє позбутися до 99% токсичних речовин за рахунок природної або привнесеної мікробіоти. Термін очищення коливається від декількох тижнів до декількох років залежно від способу ремедіації, кліматичних умов та рівня забруднення. Перспективними є використання комбінованих методів. Очищення здійснюється за різними механізмами, які полягають у повному або частковому розщепленні речовин з трансформацією їх у нетоксичні форми (вибухівка, нафтопродукти), біоакумуляції, біосорбції, біопреципітації та біовідновленні (важкі метали). У біоремедіації беруть участь як аеробні, так і анаеробні мікроорганізми, і найчастіше у літературі описано застосування представників таких родів як Pseudomonas, Clostridium, Bacillus, Serratia, Stenotrophomonas, Arthrobacter, Rhodococcus, Cellulomonas та інших. Необхідним є подальший пошук штамів, здатних до одночасного очищення грунту від декількох типів забруднювачів.

Посилання

Dmitrenko OV, Demianiuk OS, Pohorila LP, Svidiniuk NL, Rozha VV, Kyryliuk PM, Romanenko VM. Ekotoksykolohichna otsinka dernovo-pidzolystoho hruntu za vplyvu boiovykh dii. Agroekolohichnyi zhurnal. 2023;(4):89–96. https://doi.org/10.33730/2077-4893.4.2023.293758 [in Ukrainian].

Zaitsev YO, Hryshchenko OM, Romanova SA, Zaitseva IO. Vplyv boiovykh dii na vmist valovykh form vazhkykh metaliv u hruntakh Sumskoho ta Okhtyrskoho raioniv Sums'koi oblasti. Agroekolohichnyi zhurnal. 2022;(3):136–149. https://doi.org/10.33730/2077-4893.3.2022.266419 [in Ukrainian].

Zbytky dovkilliu vnaslidok zbroinoi ahresii RF: aktualna informatsiia. Sait Derzhavnoi ekolohichnoi inspektsii Ukrainy. Available from: https://www.dei.gov.ua/ (Accessed August 12, 2024) [in Ukrainian].

Kuzyk AD, Tovarianskyi VI. Vplyv voiennykh dii na lisovi systemy Ukrainy ta yikh pisliavoienne vidnovlennia. Visnyk Lvivskoho derzhavnoho universytetu bezpeky zhyttiediialnosti. 2023;(27):16–22. https://doi.org/10.32447/20784643.27.2023.02 [in Ukrainian].

Lisova N. Vplyv viiskovykh dii v Ukraini na ekolohichnyi stan terytorii. Naukovi zapysky Ternopilskoho natsionalnoho pedahohichnoho universytetu imeni Volodymyra Hnatiuka. Seriia: Heohrafiia. 2017;(2):165–173 [in Ukrainian].

Pysarenko PV, Samoilyk MS, Halytska MA, Dychenko OY, Taranenko SV. Doslidzhennia vplyvu tekhnohennoho zabrudnennia vnaslidok voiennykh dii na pokaznyky hruntu ahrotsenoziv. Ahrarni innovatsii. 2022;(14):94–102. https://doi.org/10.32848/agrar.innov.2022.14.14 [in Ukrainian].

Shumyhai IV, Konishchuk VV, Moroz VV, Manishevska NM. Bioheokhimichna, fiziolohichna adaptivnist pshenytsi ozymoi (Triticum L.) za vplyvu vazhkykh metaliv u lisostepu Ukrainy. Agroekolohichnyi zhurnal. 2023;(1):101–109. https://doi.org/10.33730/2077-4893.1.2023.276734

Abo-Alkasem MI, Hassan NH, Abo Elsoud MM. Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Cent. 2023;47:31. https://doi.org/10.1186/s42269-023-01006-z [in Ukrainian].

Aburto-Medina A, Shahsavari E, Taha M, Bates A, Van Ieperen L, Ball AS. The impacts of different biological treatments on the transformation of explosives waste contaminated sludge. Molecules. 2021;26(16):4814. https://doi.org/10.3390/molecules26164814

Adams GO, Fufeyin PT, Okoro SE, Ehinomen I. Bioremediation, biostimulation and bioaugmentation: a review. Int J Environ Bioremed Biodegrad. 2015;3(1):28–39. https://doi.org/10.12691/ijebb-3-1-5

Ahmad F, Hughes JB. Anaerobic transformation of TNT by Clostridium. In: Spain JC, Hughes JB, Knackmuss HJ, editors. Biodegradation of nitro aromatic compounds and explosives. Boca Raton, FL: Lewis; 2000. p. 185–212. https://doi.org/10.1201/9781420032673.ch8

Ajeel NS, Mohammed AJ. Bioremediation of contaminated soil with hydrocarbons discharged from liquid petroleum gas filling refineries by Burkholdaria cepatia. Int J Health Sci. 2022;6(S9):1084–1093. https://doi.org/10.53730/ijhs.v6nS9.12417

Aderonke KA, Oladimeji OO, Shittu OB, Okeyode IC, Taiwo MO. Bioaccumulation of heavy metals using selected organisms isolated from electronic waste dumpsite of two south-western states in Nigeria. Appl Environ Res. 2017;39(2):29–40. https://doi.org/10.35762/AER.2017.39.2.3

Alam MZ, Ahmad S. Multi-metal biosorption and bioaccumulation by Exiguobacterium sp. ZM-2. Ann Microbiol. 2013;63:1137–1146. https://doi.org/10.1007/s13213-012-0571-z

Ali N, Dashti N, Khanafer M, Al-Awadhi H, Radwan S. Bioremediation of soils saturated with spilled crude oil. Sci Rep. 2020;10:1116. https://doi.org/10.1038/s41598-019-57224-x

Alori ET, Gabasawa AI, Elenwo CE, Agbeyegbe OO. Bioremediation techniques as affected by limiting factors in soil environment. Front Soil Sci. 2022;2:937186. https://doi.org/10.3389/fsoil.2022.937186

Altowayti WAH, Algaifi HA, Bakar SA, Shahir S. The adsorptive removal of As (III) using biomass of arsenic resistant Bacillus thuringiensis strain WS3: characteristics and modelling studies. Ecotoxicol Environ Saf. 2019;172:176–185. https://doi.org/10.1016/j.ecoenv.2019.01.067

Andreazza R, Pieniz S, Wolf L, Lee MK, Camargo FAO, Okeke BC. Characterization of copper bioreduction and biosorption by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Sci Total Environ. 2010;408(7):1501–1507. https://doi.org/10.1016/j.scitotenv.2009.12.017

Anekwe IMS, Isa YM. Application of biostimulation and bioventing system as bioremediation strategy for the treatment of crude oil contaminated soils. Soil Water Res. 2024;19(2):100–110. https://doi.org/10.17221/66/2023-SWR

Belapurkar P, Goyal P, Kar A. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity. J Pharm Bioallied Sci. 2016;8:272–276. https://doi.org/10.4103/0975-7406.199344

Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun. 2004;316(3):816–821. https://doi.org/10.1016/j.bbrc.2004.02.120

Broomandi P, Guney M, Kim JR, Karaca F. Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability. 2020;12(21):9002. https://doi.org/10.3390/su12219002

Brown DM, Okoro S, van Gils J, van Spanning R, Bonte M, Hutchings T, Linden O, Egbuche U, Bruun KB, Smith JWN. Comparison of landfarming amendments to improve bioremediation of petroleum hydrocarbons in Niger Delta soils. Sci Total Environ. 2017;596–597:284–292. https://doi.org/10.1016/j.scitotenv.2017.04.072

Chen Z, Pan X, Chen H, Lin Z, Guan X. Investigation of lead (II) uptake by Bacillus thuringiensis 016. World J Microbiol Biotechnol. 2015;31:1729–1736. https://doi.org/10.1007/s11274-015-1923-1

Chonoko UG, Abdullahi IO, Ado SA, Whong CMZ. Hydrocarbon degradation by autochthonous species of Bacillus cereus and Pseudomonas aeruginosa isolated from Kaduna refinery effluents. Cont J Biol Sci. 2017;10(2):10–26. https://doi.org/10.5281/ZENODO.839052

Corredor D, Duchicela J, Flores F J, Maya M, Guerron E. Review of explosive contamination and bioremediation: insights from microbial and bio-omic approaches. Toxics. 2024;12:249. https://doi.org/10.3390/toxics12040249

Craig H, Sisk W, Nelson M, Dana W. Bioremediation of explosives-contaminated soils: a status review. In: Proceedings of the 10th Annual Conference on Hazardous Waste Research, Manhattan, KS, USA, 23–24 May 1995. p. 164.

Danial AW, Dardir FM. Copper biosorption by Bacillus pumilus OQ931870 and Bacillus subtilis OQ931871 isolated from Wadi Nakheil, Red Sea, Egypt.Microb Cell Fact. 2023;22:152. https://doi.org/10.1186/s12934-023-02166-3

Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol. 2007;98(7):1339–1345. https://doi.org/10.1016/j.biortech.2006.05.032

Dong Y, Lang Z, Kong X, Lu D, Liu Z. Kinetic and multidimensional profiling of accelerated degradation of oil sludge by biostimulation. Environ Sci Process Impact. 2015;17:763–774. https://doi.org/10.1039/c4em00428k

Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K.-H, Gemsa D. Mass balance studies with 14C-labeled 2,4,6-trinitrotoluene (TNT) mediated by an anaerobic Desulfovibrio species and an aerobic Serratia species. Curr Microbiol. 1998;37:380–386. https://doi.org/10.1007/s002849900397

Eaton HL, Duringer JM, Murty LD, Craig AM. Anaerobic bioremediation of RDX by ovine whole rumen fluid and pure culture isolates. Appl Microbiol Biotechnol. 2013;97:3699–3710. https://doi.org/10.1007/s00253-012-4172-3

Elgh-Dalgren K, Waara S, Duker A, von Kronhelm T, van Hees P. Anaerobic bioremediation of a soil with mixed contaminants: explosives degradation and influence on heavy metal distribution, monitored as changes in concentration and toxicity. Water Air Soil Pollut. 2009;202:301–313. https://doi.org/10.1007/s11270-009-9977-z

Fernandez-Lopez C, Posada-Baquero R, Ortega-Calvo J-J. Nature-based approaches to reducing the environmental risk of organic contaminants resulting from military activities. Sci Total Environ. 2022;843. https://doi.org/10.1016/j.scitotenv.2022.157007

Forján R, Lores I, Sierra C, Baragaño D, Gallego JLR, Peláez AI. Bioaugmentation treatment of a PAH-polluted soil in a slurry bioreactor. Appl Sci. 2020;10(8):2837. https://doi.org/10.3390/app10082837

Fowler SJ, Toth CRA, Gieg LM. Community structure in methanogenic enrichments provides insight into syntrophic interactions in hydrocarbon-impacted environments. Front Microbiol. 2016;7:562. https://doi.org/10.3389/fmicb.2016.00562

García-Alcántara JA, Maqueda-Gálvez AP, Téllez-Jurado A, Hernández-Martínez R, Lizardi-Jiménez MA. Maya crude-oil degradation by a Bacillus licheniformis consortium isolated from a Mexican thermal source using a bubble column bioreactor. Water Air Soil Pollut. 2016;227:413. https://doi.org/10.1007/s11270-016-3121-7

Habineza A, Zhai J, Mai T, Mmereki D, Ntakirutimana T. Biodegradation of 2,4,6-trinitrotoluene (TNT) in contaminated soil and microbial remediation options for treatment. Period Polytech Chem Eng. 2017;61:171–187. https://doi.org/10.3311/PPch.9251

Hawari A, Halasz T, Sheremata T, et al. Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol. 2000;66(6):2652–2657. https://doi.org/10.1128/aem.66.6.2652-2657.2000

Hryhorczuk D, Levy BS, Prodanchuk M, Kravchuk O, Bubalo N., Hryhorczuk A, Erickson TB. The environmental health impacts of Russia’s war on Ukraine. J Occup Med Toxicol. 2024;19(1). https://doi.org/10.1186/s12995-023-00398-y

Jaafaryneya M, Amani J, Halabian R. Biodegradation of 2,4,6-trinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine by Actinomycetes species, first time isolated and characterized from water, wastewater, and sludge. Water Environ J. 2023;37(3):538–548. https://doi.org/10.1111/wej.12857

Johnsen AR, Boe US, Henriksen P, Malmquist LMV, Christensen J.H. Full-scale bioremediation of diesel-polluted soil in an Arctic landfarm. EnvironPollut. 2021;280. https://doi.org/10.1016/j.envpol.2021.116946

Kaida N, Habib S, Yasid NA, Shukor MYA. Biodegradation of petroleum hydrocarbons by Bacillus spp.: a review. Bioremediation Sci Technol Res. 2018;6(2):14–21. https://doi.org/10.54987/bstr.v6i2.433

Kalderis D, Juhasz AL, Boopathy R, Comfort S. Soils contaminated with explosives: environmental fate and evaluation of state-of-the-art remediation processes (IUPAC technical report). Pure Appl Chem. 2011;83(7):1407–1484. https://doi.org/10.1351/PAC-REP-10-01-05

Keshani-Langroodi S, Lan Y, Stenuit B, Rosen G, Hughes JB, Sales CM. Uncovering the structure and function of microbial communities formed during periodic tilling of TNT and DNT co-contaminated soils. bioRxiv. 2020. https://www.biorxiv.org/content/10.1101/2020.12.12.420737v1

Khan MI, Yoo K, Kim S, Cheema SA, Bashir S, Park J. A Sporolactobacillus-, Clostridium-, and Paenibacillus-dominant microbial consortium improved anaerobic RDX detoxification by starch addition. J. Microbiol. Biotechnol. 2020; 30(6):839–847. https://doi.org/10.4014/jmb.1910.10034

Kimber RL, Elizondo G, Jedyka K, Boothman C, Cai R, Bagshaw H et al. Copper bioreduction and nanoparticle synthesis by an enrichment culture from a former copper mine. Environ. Microbiol. 2023; 25(12):3139–3150. https://doi.org/10.1111/1462-2920.16488

Kolwzan B, Grabas K, Pawelczyk A. Bioremediation of military area contaminated by petroleum products. Geotechnics of Waste Management and Remediation (GeoCongress): Proc. Conf. 2012. https://ascelibrary.org/doi/10.1061/40970%28309%2963

Li DS, Feng JQ, Liu YF, Zhou L, Liu JF, Gu JD, Mu BZ, Yang SZ. Enrichment and immobilization of oil-degrading microbial consortium on different sorbents for bioremediation testing under simulated aquatic and soil conditions. Appl. Environ. Biotechnol. 2019; 5(1):1–11. https://www.udspub.com/ajj/public/index.php/aeb/article/view/509

Li M, Liu S, Wang Y, Do H, Zhao C. Effect of coexisting metal ions on bio-precipitation of Cu 2+ phosphate by Rahnella sp. LRP3 and its stability in soil. Plant Soil Environ. 2021; 67(12):729–738. https://doi.org/10.17221/279/2021-PSE

Limcharoensuk T, Sooksawat N, Sumarnrote A, Awutpet T, Kruatrachue M, Pokethitiyook P, Auesukaree C. Bioaccumulation and biosorption of Cd 2+ and Zn 2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicol. Environ. Saf. 2015; 122:322–330. https://doi.org/10.1016/j.ecoenv.2015.08.013

Lin C, Cheruiyot NK, Bui XT, Ngo HH. Composting and its application in bioremediation of organic contaminants. Bioengineered. 2022; 13(1):1073–1089. https://doi.org/10.1080/21655979.2021.2017624

Lin C, Sheu D-S, Lin T-C, Cao CM, Grasso D. Thermophilic biodegradation of diesel oil in food waste composting processes without bioaugmentation. Environ Eng Sci. 2012; 29(2):117–123. https://doi.org/10.1089/ees.2010.0212

Liu P, Zhang Y, Tang Q, Shi S. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochem. Eng. J. 2021; 166. https://doi.org/10.1016/j.bej.2020.107856

Lorenz A, Rylott EL, Strand SE, Bruce NC. Towards engineering degradation of the explosive pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine in the rhizosphere. FEMS Microbiol. Lett. 2013; 340:49-54. https://doi.org/10.1111/1574-6968.12072

Lv Y, Zhu X, Zhang M, Liu X, Wang J. In-situ bioremediation of multiple heavy metals contaminated farmland soil by sulfate-reducing bacteria. Polish J. Environ. Stud. 2022; 31(2):1747–1755. https://doi.org/10.15244/pjoes/141326

Mambwe M, Kalebaila KK, Johnson T. Photochemical oxidation and landfarming as remediation techniques for oil-contaminated soil. GJESM. 2024; 10(2):517–536. https://doi.org/10.22034/gjesm.2024.02.07

Marwa A. Influence of organic waste on bioremediation of oil-contaminated soil. Ecological Engineering & Environmental Technology. 2024; 25(5):32–41. https://doi.org/10.12912/27197050/184238

Mehrotra T, Dev S, Banerjee A, Chatterjee A, Singh R, Aggarwal S. Use of immobilized bacteria for environmental bioremediation: a review. J. Environ. Chem. Eng. 2021; 9(5). https://doi.org/10.1016/j.jece.2021.105920

Mercimek HA, Dincer S, Guzeldag G, Ozsavli A, Matyar F, Arkut A, Kayis F, Sumengen Ozdenefe M. Degradation of 2,4,6-trinitrotoluene by P. aeruginosa and characterization of some metabolites. Braz. J. Microbiol. 2015; 46(1):103–111. https://doi.org/10.1590/S1517-838246120140026

Molokwane PE, Meli CK, Chirwa EMN. Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading. Water Sci. Technol. 2008; 58(2):399–405. https://doi.org/10.1016/j.watres.2008.07.040

Morales-Guzman G, Ferrera-Cerrato R, Rivera-Cruz MC, Torres-Bustillos L.G., Arteaga-Garibay RI, Mendoza-Lopez MR, Esquivel-Cote R, Alarcon A. Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Appl. Soil Ecol. 2017; 121:127–134. https://doi.org/10.1016/j.apsoil.2017.10.003

Murthy S, Geetha B, Sarangi SK. Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. Afr. J. Biotechnol. 2011; 10:15966–15972. https://doi.org/10.5897/AJB11.1645

Muter O. Current trends in bioaugmentation tools for bioremediation: a critical review of advances and knowledge gaps. Microorganisms. 2023; 11(3):710. https://doi.org/10.3390/microorganisms11030710

Mystrioti C, Papassiopi NA. Comprehensive review of remediation strategies for soil and groundwater contaminated with explosives. Sustainability. 2024; 16(3):961. https://doi.org/10.3390/su16030961

Nagar S, Shaw AK, Anand S, Celin SM, Rai PK. Aerobic biodegradation of HMX by Planomicrobium flavidum. Biotech. 2018; 8:455. https://doi.org/10.1007/s13205-018-1479-5

Najim AA, Radeef AY, al-Doori I, Jabbar ZH. Immobilization: the promising technique to protect and increase the efficiency of microorganisms to remove contaminants. J. Chem. Technol. Biotechnol. 2024; 99:1707–1733. https://doi.org/10.1002/jctb.7638

Nyanhongo GS, Rodriguez Couto S, Gübitz G. Coupling of 2,4,6-Trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere. 2006; 64:309–319. https://doi.org/10.1016/j.chemosphere.2005.12.034

Okeke BC, Giblin T, Frankenberger WT. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut. 2002; 118(3):357–363. https://doi.org/10.1016/S0269-7491(01)00288-3

Otaiku AA, Alhaji AI. Characterization of microbial species in the bio-degradation of explosives, military shooting range, Kaduna, Nigeria. J. Appl. Biotechnol. Bioeng. 2020; 7(3):128–147. https://doi.org/10.15406/jabb.2020.07.00226

Oviedo-Ocaña ER, Hernández-Gómez AM, Ríos M, Portela A, Sánchez-Torres V, Domínguez I, Komilis DA. Comparison of two-stage and traditional co-composting of green waste and food waste amended with phosphate rock and sawdust. Sustainability. 2021; 13(3):1109. https://doi.org/10.3390/su13031109

Pan Z, Wu Y, Zhai Q, Tang Y, Liu X, Xu X, Liang S, Zhang H. Immobilization of bacterial mixture of Klebsiella variicola FH-1 and Arthrobacter sp. NJ-1 enhances the bioremediation of atrazine-polluted soil environments. Front. Microbiol. 2023; 14:1056264. https://doi.org/10.3389/fmicb.2023.1056264

Pichtel J. Distribution and fate of military explosives and propellants in soil: A review. Appl. Environ. Soil Sci. 2012; Volume 2012, Article ID 617236. P. 1–33. https://doi.org/10.1155/2012/617236

Pino-Herrera DO, Pechaud Y, Huguenot D, Esposito G, van Hullebusch ED., Oturan MA. Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: an overview. J. Hazard. Mater. 2017; 339:427–449. https://doi.org/10.1016/j.jhazmat.2017.06.013

Ridene S, Werfelli N, Mansouri A, Landoulsi A, Abbes C. Bioremediation potential of consortium Pseudomonas stutzeri LBR and Cupriavidus metallidurans LBJ in soil polluted by lead. PLoS ONE. 2023; 18(6): e0284120. https://doi.org/10.1371/journal.pone.0284120

Rodríguez-Seijo A, Fernández-Calviño D, Arias-Estévez M, et al. Effects of military training, warfare and civilian ammunition debris on the soil organisms: an ecotoxicological review. Biol. Fertil. Soils. 2024; 60:813–844. https://doi.org/10.1007/s00374-024-01835-8

Sable H, Kumar V, Mishra R, et al. Biosorption of hexavalent chromium by Shewanella putrefaciens MTCC 8104: response surface methodology optimization and mechanistic insights. Indian J. Microbiol. 2024. https://doi.org/10.1007/s12088-024-01365-9

Sakdapetsiri C, Kaokhum N, Pinyakong O. Biodegradation of crude oil by immobilized Exiguobacterium sp. AO-11 and shelf life evaluation. Sci. Rep. 2021; 11:12990. https://doi.org/10.1038/s41598-021-92122-1

Saleem H, Farooq H, Mazhar R, Shakil S, Fazal S. A review on bioremediation of heavy metals and hydrocarbons through plant growth-promoting bacteria and composting. Journal of Bioresource Management. 2024; 11(1). https://corescholar.libraries.wright.edu/cgi/viewcontent.cgi?article=1694&-context=jbm

Sanjana M, Prajna R, Katti US, Kavitha RV. Bioremediation – the recent drift towards a sustainable environment. Environ. Sci.: Adv. 2024; 3:1097–1110. https://doi.org/10.1039/D3VA00358B

Saravanan A, Swaminaathan P, Kumar PS, Yaashikaa PR, Kamalesh R, Rangasamy GA comprehensive review on immobilized microbes - biochar and their environmental remediation: mechanism, challenges and future perspectives. Environ. Res. 2023; 236(1). https://doi.org/10.1016/j.envres.2023.116723

Serrano-González MY, Chandra R, Castillo-Zacarias C, Robledo-Padilla F, Rostro-Alanis M. de J, Parra-Saldivar R. Biotransformation and degradation of 2,4,6-trinitrotoluene by microbial metabolism and their interaction. Defence Technol. 2018; 14(2):151–164. https://doi.org/10.1016/j.dt.2018.01.004

Sharma A, Biswajit P, Jagdish. Microbial degradation of expired slurry explosives in mines: a review. Int. J. Environ. Stud. 2014. https://doi.org/10.1080/00207233.2014.983738

Sharma K, Sharma P, Sangwan P. Bioremediation of RDX and HMX contaminated soil employing a biochar-based bioformulation. Carbon Res. 2023; 2:33. https://doi.org/10.1007/s44246-023-00068-y

Shemer B, Shpigel E, Hazan C, Kabessa Y, Agranat AJ, Belkin S. Detection of buried explosives with immobilized bacterial bioreporters. Microb. Biotechnol. 2020; 14:251–261. https://doi.org/10.1111/1751-7915.13683

Shukla S, Mbingwa G, Khanna S, Dalal J, Sankhyan D, Malik A, Badhwar N. Environment and health hazards due to military metal pollution: a review. Environmental Nanotechnology, Monitoring & Management. 2023; 20. https://doi.org/10.1016/j.enmm.2023.100857

Siles JA, Margesin R. Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. Appl. Microbiol. Biotechnol. 2018; 102:4409–4421. https://doi.org/10.1007/s00253-018-8932-6

Singh N, Gupta S, Marwa N, Pandey V, Verma PC, Rathaur S, Singh N. Arsenic mediated modifications in Bacillus aryabhattai and their biotechnological application for arsenic bioremediation. Chemosphere. 2016; 164:524–534. https://doi.org/10.1016/j.chemosphere.2016.08.119

Sinha A, Pant KK, Khare SK. Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int. Biodeterior. Biodegrad. 2012. https://doi.org/10.1016/j.ibiod.2011.12.014

Snape JR, Walkley NA, Morby AP, Nicklin S, White GF. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter. J. Bacteriol. 1997; 179(24):7796–7802. https://doi.org/10.1128/jb.179.24.7796-7802.1997

Sun J, Wang F, Jia X, Wang X, Xiao X, Dong H. Research progress of bio-slurry remediation technology for organic contaminated soil. RSC Adv. 2023; 13(15):9903–9917. https://doi.org/10.1039/d2ra06106f

Tran TM, Lee JU. Biosorption of Cd by an indigenous Cd-resistant bacterium isolated from soil contaminated with Cd. Geosci J. 2024; 28:15–25. https://doi.org/10.1007/s12303-023-0031-8

USEPA. Innovative uses of compost: composting of soils contaminated by explosives. U.S. Environmental Protection Agency: Washington, DC, USA. 1997.

Wang S, Wang X, Zhang C, Li F, Guo G. Bioremediation of oil sludge contaminated soil by landfarming with added cotton stalks. Int. Biodeterior. Biodegradation. 2016; 106:150–156. https://doi.org/10.1016/j.ibiod.2015.10.014

Wróbel M, Śliwakowski W, Kowalczyk P, Kramkowski K, Dobrzyński J. Bioremediation of heavy metals by the genus Bacillus. Int. J. Environ. Res. Public Health. 2023; 20(6):4964. https://doi.org/10.3390/ijerph20064964

Yan X, Gao B, Wang J, Zhu X, Zhang M. Insights into remediation effects and bacterial diversity of different remediation measures in rare earth mine soil with SO42- and heavy metals. Front. Microbiol. 2023; 14. https://doi.org/10.3389/fmicb.2023.1050635

Zhang Z, Fan Z, Zhang G, Qin L, Fang J. Application progress of microbial immobilization technology based on biomass materials. BioResources. 2021; 16(4):8509–8524. https://doi.org/10.15376/biores.16.4.Zhang

##submission.downloads##

Опубліковано

2024-09-20

Номер

Розділ

ОГЛЯДОВІ ПРАЦІ