РОЛЬ BACILLUS SPP. У СТАЛОМУ ЗЕМЛЕРОБСТВІ ТА БІОКОНТРОЛІ

Автор(и)

  • М. Б. Галкін Одеський національний університет імені І. І. Мечникова, Україна https://orcid.org/0000-0002-4957-7148
  • Б. П. Ружанський Одеський національний університет імені І. І. Мечникова, Україна

DOI:

https://doi.org/10.18524/2307-4663.2024.3(62).315016

Ключові слова:

Bacillus spp., ризобактерії, біоконтроль, біоплівка, стале землеробство

Анотація

Метою даної роботи є аналіз літератури щодо потенційного використання Bacillus spp. у біологічному контролі рослин та розвитку сталого землеробства. Огляд літератури. Рослини, які взаємодіють із PGPR (ризобактеріями, що стимулюють ріст рослин), краще розвиваються і є більш стійкими до стресу. Bacillus spp. використовуються у сільському господарстві як PGPR для підвищення врожайності та стресостійкості культур, проте ефективність їх використання може змінюватися за різних умов. Відмінності у результатах випробувань між лабораторними і польовими умовами підкреслюють необхідність подальших досліджень у цій сфері. Bacillus spp., наприклад, B. subtilis, покращують фіксацію азоту, беруть участь у мобілізації фосфору та збільшують вміст заліза в рослинах. Крім того, Bacillus spp. виробляють фітогормони та сполуки, які регулюють гормональний баланс рослин. Бацили захищають рослини від патогенів, виробляючи антимікробні сполуки, такі як ліпопептиди та антибіотики. З метою кращої колонізації B. subtilis модулюють експресію генів рослин і утворюють біоплівки у процесі, що регулюється системою quorum sensing. Висновки. Дослідження взаємодії рослин і бактерій у ризосфері показали, що корисні бактерії, такі як Bacillus spp., покращують ріст і стійкість рослин шляхом регуляції гормонів, утворення біоплівок, впливу на імунні відповіді рослин, покращення доступності поживних речовин і стійкості до стресу. B. subtilis та інші види бацил є особливо ефективними у підвищенні врожайності культур та зменшенні захворюваності. Особливо важливою є їх здатність підвищувати стійкість рослин до посухи та солоності. Ці характеристики роблять Bacilli spp. перспективними та цінними для використання у сталому сільському господарстві.

Посилання

Adam M, Heuer H, Hallmann J. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS One. 2014;9(2):e90402. https://doi.org/10.1371/journal.pone.0090402

Allard-Massicotte R, Tessier L, Lecuyer F, Lakshmanan V, Lucier JF, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio. 2016;7(6):e01664-16. https://doi.org/10.1128/mBio.01664-16

Arrizubieta M, Simón O, Williams T, Caballero P. Determinant factors in the production of a co-occluded binary mixture of Helicoverpa armigera alphabaculovirus (HearNPV) genotypes with desirable insecticidal characteristics. PLoS One. 2016;11(10):e0164486. https://doi.org/10.1371/journal.pone.0164486

Bardin M, Ajouz S, Comby M, Lopez-Ferber M, Graillot B, Siegwart M, Nicot PC. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front Plant Sci. 2015;6:566. https://doi.org/10.3389/fpls.2015.00566

Beauregard PB, Chai YR, Vlamakis H, Losick R, Kolter R. Bacillus subtilis biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA. 2013;110(17):E1621–E1630. https://doi.org/10.1073/pnas.121898411

Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.00

Blake C, Christensen MN, Kovács ÁT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs. Lyngby, Denmark. Mol Plant Microbe Interact. 2021;34(1):15–25. https://doi.org/10.1094/MPMI-08-20-0225-CR

Boguslawski KM, Hill PA, Griffith KL. Novel mechanisms of controlling the activities of the transcription factors Spo0A and ComA by the plasmidencoded quorum sensing regulators Rap60-Phr60 in Bacillus subtilis. Mol Microbiol. 2015;96(2):325–348. https://doi.org/10.1111/mmi.12939

Borriss R. Bacillus, a plant-beneficial bacterium. In: Lugtenberg B, editor. Principles of Plant-Microbe Interactions. Springer International Publishing; 2015. p. 379–391. https://doi.org/10.1007/978-3-319-08574-6

Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integr Med (Encinitas). 2014;13(6):17–22. Available from: https://pubmed.ncbi.nlm.nih.gov/26770121/

Carvalho FP. Pesticides, environment, and food safety. Food Energy Secur. 2017;6(2):48–60. https://doi.org/10.1002/fes3.108

Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M. Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant Microbe Interact. 2014;27(1):87–100. https://doi.org/10.1094/MPMI-09-13-0262-R

Chen WC, Juang RS, Wei YH. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem Eng J. 2015;103:158–169. https://doi.org/10.1016/j.bej.2015.07.009

Dragos A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, Eriksen C, Brix S, Drescher K, Stanley-Wall N, Kummerli R, Kovács ÁT. Division of labor during biofilm matrix production. Curr Biol. 2018;28(12):1903–1913,e5. https://doi.org/10.1016/j.cub.2018.04.046

Deng Y, Chen H, Li C, Xu J, Qi Q, Xu Y, Zhu Y, Zheng J, Peng D, Ruan L, Sun M. Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin. Commun Biol. 2019;2(368). https://doi.org/10.1038/s42003-019-0614-0

Egamberdieva D, Wirth S, Behrendt U, Abd_Allah EF, Berg G. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria. Front Microbiol. 2016;7(209). https://doi.org/10.3389/fmicb.2016.00209

Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q. Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front Microbiol. 2017;8(1973). https://doi.org/10.3389/fmicb.2017.01973

Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka EA, Jacquard C, Dorey S. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol. 2015;16(2):177–187. https://doi.org/10.1111/mpp.12170

Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science. 2018;360(6390):739–742. https://doi.org/10.1126/science.aap7999

Fita A, Rodriguez-Burruezo A, Boscaiu M, Prohens J, Vicente O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front Plant Sci. 2018;6(978). https://doi.org/10.3389/fpls.2015.00978

Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. https://doi.org/10.1038/nrmicro.2016.94

Freitas MA, Medeiros FH, Carvalho SP, Guilherme LR, Teixeira WD, Zhang H, Pare PW. Augmenting iron accumulation in cassava by the beneficial soil bacterium Bacillus subtilis (GBO3). Front Plant Sci. 2015;6(596). https://doi.org/10.3389/fpls.2015.00596

Gadhave KR, Finch P, Gibson TM, Gange AC. Plant growth-promoting Bacillus suppress Brevicoryne brassicae feld infestation and trigger density-dependent and density-independent natural enemy responses. J Pest Sci. 2016;89(4):985–992. https://doi.org/10.1007/s10340-015-0721-8

Gao S, Wu H, Yu X, Qian L, Gao X. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control. 2016;98:11–17. https://doi.org/10.1016/j.biocontrol.2016.03.011

García-Gutiérrez MS, Ortega-Álvaro A, Busquets-García A, Pérez-Ortiz JM, Caltana L, Ricatti MJ, Manzanares J. Synaptic plasticity alterations associated with memory impairment induced by deletion of CB2 cannabinoid receptors. Neuropharmacology. 2013;73:388–396. https://doi.org/10.1016/j.neuropharm.2013.05.034

Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res. 2018;206:131–140. https://doi.org/10.1016/j.micres.2017.08.016

Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, De Salamone IEG, Nelson LM, Roitsch T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep. 2016;6(23310). https://doi.org/10.1038/srep23310

Hashem A, Tabassum B, Abd_Allah EF. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J Biol Sci. 2019;26(6):1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

Hiltner L. Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeit. Deut. Landw. Ges. Berl. 1904;98:59–78. https://doi.org/10.12691/aees-1-6-1

Kiesewalter HT, Andrade CNL, Wibowo M, Strube ML, Maroti G, Snyder D, Jørgensen TS, Larsen TO, Cooper VS, Weber T, Kovács ÁT. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems. 2021;6(1). https://doi.org/10.1101/2020.08.05.238063

Kovács ÁT. Bacillus subtilis. Trends Microbiol. 2019;27(9):724–725. https://doi.org/10.1016/j.tim.2019.03.008

Kumar AS, Lakshmanan V, Caplan JL, Powell D, Czymmek KJ, Levia DF, Bais HP. Rhizobacteria Bacillus subtilis restricts foliar pathogen entry through stomata. Plant J. 2012;72:694–706. https://doi.org/10.1111/j.1365-313X.2012.05116.x

Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol. 2015;99:1897–1910. https://doi.org/10.1007/s00253-014-6195-4

Marlow VL, Porter M, Hobley L, Kiley TB, Swedlow JR, Davidson FA, Stanley-Wall NR. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J Bacteriol. 2014;196(1):16–27. https://doi.org/10.1128/JB.00930-13

Mielich-Süss B, Lopez D. Molecular mechanisms involved in Bacillus subtilis biofilm formation. Environ Microbiol. 2015;17(3):555–565. https://doi.org/10.1111/1462-2920.12527

Mishra J, Singh R, Arora NK. Plant growth-promoting microbes: diverse roles in agriculture and environmental sustainability. In: Kumar V, Kumar M, Sharma S, Prasad R, editors. Probiotics and Plant Health. Springer; 2017. p. 71–111. https://doi.org/10.1007/978-981-10-3473-2_4

Mnif I, Ghribi D. Review lipopeptides biosurfactants: main classes and new insights for industrial, biomedical, and environmental applications. Peptide Sci. 2015;104(3):129–147. https://doi.org/10.1002/bip.2263

Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, Garcia-Martin ML, Lamon G, Haberstein B, Cazorla FM, de Vicente A, Loquet A, Dorrestein PC, Romero D. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant colonization. Nat Commun. 2019;10(1919). https://doi.org/10.1128/spectrum.00939-22

Moreira RR, De Mio LLM. Potential biological agents isolated from apple fail to control Glomerella leaf spot in the field. Biol Control. 2015;87:56–63. https://doi.org/10.1016/j.biocontrol.2015.04.020

Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E. Effect of specific plant-growth-promoting rhizobacteria (PGPR) on growth and uptake of neonicotinoid insecticide thiamethoxam in corn (Zea mays L.) seedlings. Pest Manag Sci. 2015;71(9):1258–1266. https://doi.org/10.1002/ps.3919

Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, Foster KR. Biofilm formation as a response to ecological competition. PLoS Biol. 2015;13(7):e1002191. https://doi.org/ 10.1371/journal.pbio.1002232

Omer Bendori S, Pollak S, Hizi D, Eldar A. The RapP-PhrP quorum-sensing system of Bacillus subtilis strain NCIB3610 affects biofilm formation through multiple targets, due to an atypical signal-insensitive allele of RapP. J Bacteriol. 2015;197(3):592–602. https://doi.org/10.1128/JB.02382-14

Powers MJ, Sanabria-Valentin E, Bowers AA, Shank EA. Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. J Bacteriol. 2015;197(11):2129–2138. https://doi.org/10.1128/JB.02535-14

Qiao J, Yu X, Liang X, Liu Y, Borriss R, Liu Y. Addition of plant-growth-promoting Bacillus subtilis PTS-394 on tomato rhizosphere has no durable impact on composition of root microbiome. BMC Microbiol. 2017;17(131). https://doi.org/10.1186/s12866-017-1039-x

Radhakrishnan R, Hashem A, Abd_Allah EF. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol. 2017;8(667). https://doi.org/10.3389/fphys.2017.00667

Rekha K, Kumar RM, Ilango K, Rex A, Usha B. Transcriptome profiling of rice roots in early response to Bacillus subtilis (RR4) colonization. Botany. 2018;96(10):749–765. https://doi.org/10.1139/cjb-2018-0052

Saeid A, Prochownik E, Dobrowolska-Iwanek J. Phosphorus solubilization by Bacillus species. Molecules. 2018;23(11):e2897. https://doi.org/10.3390/molecules23112897

Sasse J, Martinoia E, Northen T. Feed your friends: Do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23(1):25–41. https://doi.org/10.1016/j.tplants.2017.09.003

Sen S, Borah SN, Bora A, Deka S. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Factories. 2017;16(95). https://doi.org/10.1186/s12934-017-0711-z

Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol. 2009;85(2):371–381. https://doi.org/10.1007/s00253-009-2116-3

Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res. 2014;9:1265–1277. https://doi.org/10.5897/AJAR2013.7914

Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas P, Krishnani K. Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Appl. Biochem. Biotechnol. 2016;180(5),872–882. https://doi.org/10.1007/s12010-016-2139-z

Stefanic P, Kraigher B, Lyons NA, Kolter R, Mandic-Mulec I. Kin discrimination between sympatric Bacillus subtilis isolates. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:14042–14047. https://doi.org/10.1073/pnas.1512671112

Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, Ruan Y, Geisen S, Shen Q, Kowalchuk GA. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 2020;8(137). https://doi.org/10.1186/s40168-020-00892-z

Thérien M, Kiesewalter HT, Auria E, Charron-Lamoureux V, Wibowo M, Maróti G, Kovács AT, Beauregard PB. Surfactin production is not essential for pellicle and root-associated biofilm development of Bacillus subtilis. Biofilm. 2020;2:е100021. https://doi.org/10.1016/j.bioflm.2020.100021

Townsley L, Yannarell SM, Huynh TN, Woodward JJ, Shank EA. Cyclic di-AMP acts as an extracellular signal that impacts Bacillus subtilis biofilm formation and plant attachment. MBio. 2018;9:e003410-18. https://doi.org/10.1128/mBio.00341-18

Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant-microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020; 18:607–621. https://doi.org/10.1038/s41579-020-0412-1

van Gestel J, Vlamakis H, Kolter R. Division of labor in biofilms: The ecology of cell differentiation. Microbiol. Spectr. 2015;3. https://doi.org/10.1128/microbiolspec.mb-0002-201

Verma PP, Shelake RM, Das S, Sharma P, Kim JY. Plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF): potential biological control agents of diseases and pests. Microbial Interventions in Agriculture and Environment. Springer, Singapore. 2019,281–311. https://doi.org/10.1007/978-981-13-8391-5_11

Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. Sticking together: Building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 2013;11:157–168. https://doi.org/10.1038/nrmicro2960

Walukiewicz HE, Tohidifar P, Ordal GW, Rao CV. Interactions among the three adaptation systems of Bacillus subtilis chemotaxis as revealed by an in vitro receptor-kinase assay. Mol. Microbiol. 2014; 93:1104–1118. https://doi.org/10.1111/mmi.12721

Wang T, Liang Y, Wu M, Chen Z, Lin J, Yang L. Natural products from Bacillus subtilis with antimicrobial properties. Chin. J. Chem. Eng. 2015;23(4),744–754. https://doi.org/10.1016/j.cjche.2014.05.020

Wang X, Zhao D, Shen L, Jing C, Zhang C. Application and mechanisms of Bacillus subtilis in biological control of plant disease. Role of Rhizospheric Microbes in Soil. Springer. 2018. p. 225–250. https://doi.org/10.1007/978-981-10-8402-7_9

Ward E, Kim EA, Panushka J, Botelho T, Meyer T, Kearns DB, Ordal G, Blair DF. Organization of the flagellar switch complex of Bacillus subtilis. J. Bacteriol. 2019;201. https://doi.org/10.1128/JB.00626-18

Webb BA, Hildreth S, Helm RF, Scharf BE. Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl. Environ. Microbiol. 2014;80(11),3404–3415. https://doi.org/10.1128/AEM.00115-14

Wei F, Hu X, Xu X. Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Sci. Rep. 2016;6:22611. https://doi.org/10.1038/srep22611

Woo OG, Kim H, Kim JS, Keum HL, Lee KC, Sul WJ, Lee JH. Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in Arabidopsis thaliana and Brassica campestris. Plant Physiol. Biochem. 2020;148:359–367. https://doi.org/10.1016/j.plaphy.2020.01.03

Xie SS, Wu HJ, Zang HY, Wu LM, Zhu QQ, Gao XW. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant-Microbe Interact. 2014;27:655–663. https://doi.org/10.1094/MPMI-01-14-0010-R

Yang YM, Pollard A, Höfler C, Poschet G, Wirtz M, Hell R, Sourjik V. Relation between chemotaxis and consumption of amino acids in bacteria. Mol. Microbiol. 2015;96(6),1272–1282. https://doi.org/10.1111/mmi.13006

Yu Y, Yan F, Chen Y, Jin C, Guo J.H, Chai Y. Poly-g-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Front. Microbiol. 2016;7:е1811. https://doi.org/10.3389/fmicb.2016.01811

Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil. 2014;374:689–700. https://doi.org/10.1007/s11104-013-1915-6

##submission.downloads##

Опубліковано

2024-12-20

Номер

Розділ

ОГЛЯДОВІ ПРАЦІ