АНТАГОНІСТИЧНИЙ ПОТЕНЦІАЛ БАКТЕРІЙ РОДУ BACILLUS

Автор(и)

  • Л. А. Шевченко Інститут сільськогосподарської мікробіології та агропромислового виробництва НААН; Національний університет «Чернігівська політехніка», Україна https://orcid.org/0000-0002-2637-1999
  • Т. С. Сасіна Інститут сільськогосподарської мікробіології та агропромислового виробництва НААН, Україна https://orcid.org/0000-0003-4021-9202

DOI:

https://doi.org/10.18524/2307-4663.2025.1(63).323316

Ключові слова:

Bacillus, антагонізм, фітопатогени, вторинні метаболіти

Анотація

Здійснено аналіз літератури з питань антагоністичного потенціалу бактерій роду Bacillus. Охарактеризовано основні механізми антифунгальної та антибактеріальної дії представників даного роду. Описані приклади різноманітних природних сполук, синтезованих бактеріями, що робить їх цінними об’єктами у біотехнологічних процесах, зокрема у виробництві біофунгіцидів, та розкриває перспективи їх практичного застосування у сільському господарстві.

Посилання

Abbas MST. Genetically engineered (modified) crops (Bacillus thuringiensis crops) and the world controversy on their safety. Egypt J Biol Pest Control. 2018;28:52. https://doi.org/10.1186/s41938-018-0051-2

Ahimou F, Jacques P, Deleu M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol. 2000;27:749–754. https://doi.org/10.1016/s0141-0229(00)00295-7

Alabouvette C, Couteadier Y. Biological Control of Plant Diseases: Progress and Challenges for the Future. In E. C. Tjamos, G. C. Papavizas and R. J. Cook, editors. Biological Control of Plant Diseases. Plenum Press, New York. 1992;415–426.

Ananda M, Rusmana I, Akhdiya A. Quorum quenching of Bacillus cereus INT1c against Pseudomonas syringae. J. Phys. Conf. Ser. 2019;1277(012010):1–9. https://doi.org/10.1088/1742-6596/1277/1/012010

Backhouse D, Stewart A. Interactions between Bacillus species and sclerotia of Sclerotium cepivorum. Soil Biol. and Biochem. 1989;21(1):173–176.

Bartnicki-Garcia S. Fungal cell wall composition. In Handbook of Microbiology 2. CRC Press, Cleveland, OH. 1973:201–214.

Benitez LB, Velho RV, Lisboa MP, Medina LF, Brandelli A. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol. 2010;48(6):791–797. https://doi.org/10.1007/s12275-010-0164-0

Carrillo C, Teruel JA, Aranda FJ, Ortiz A. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta. 2003;1611:91–97. https://doi.org/10.1016/s0005-2736(03)00029-4

Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front. Microbiol. 2019;10:302. https://doi.org/10.3389/fmicb.2019.00302

Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol. 2015;8(2):281–295. https://doi.org/10.1111/1751-7915.12238

Chen XH, Koumoutsi A, Scholz R, Borriss R. More than anticipated – production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J Mol Microbiol Biotechnol. 2009;16(1-2):14–24. https://doi.org/10.1159/000142891

Choi HK, Song GC, Yi HS, Ryu CM. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 2014;40(8):882–892. https://doi.org/10.1007/s10886-014-0488-z

Dame ZT, Rahman M, Islam T. Bacilli as sources of agrobiotechnology: recent advances and future directions. Green Chemistry Letters and Reviews. 2021;14:2:246–271. https://doi.org/10.1080/17518253.2021.1905080

Debois D, Jourdan E, Smargiasso N, Thonart P, Pauw E, Ongena M. Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem. 2014;86(9):4431–8. https://doi.org/10.1021/ac500290s

Dewi RTK, Mubarik NR, Suhartono MT. Medium optimization of β-glucanase production by Bacillus subtilis SAHA 32.6 used as biological control of oil palm pathogen. Emirates J Food Agric. 2016;28(2):116–125. https://doi.org/10.9755/ejfa.2015-05-195

Dragovoz IV, Leonova NO, Zelena LB, Rebriyev VA, Аvdeeva LV. Identification of Bacillus amyloliquefaciens subsp. plantarum IMV B-7404 strain exometabolites with antifungal activity. Reports of the National Academy of Sciences of Ukraine. 2015;(7):129–135. https://doi.org/10.15407/dopovidi2015.07.129

Dunlap CA, Browman MJ, Schisler DA. Genomic analysis and secondary metabolite production in Bacillus аmyloliquefaciens AS 43.3: A biocontrol antagonist of Fusarium head blight. Biological Control. 2013;64(2):166–175.

El-Aassar S, Ghanem K, Sabrys A, Ghanem N. Purification and characterization of chitinases produced by Bacillus аmyloliquefaciens. Bioseparation. 1992;3(1):37–46.

Engelbrecht G, Horak I, Jansen van Rensburg PJ, Claassens S. Bacillus-based bionematicides: development, modes of action and commercialisation. Biocontrol Sci. Technol. 2018;28(7):629–653. https://doi.org/10.1080/09583157.2018.1469000

European Commission Regulation No 1881/2006 of 19 December 2006. Settingmaximum levels for certain contaminants in food stuffs. Off. J. Eur. L. 2006;364;5–24.

Felipe V, Palma L, Yaryura P. Antagonistic activity of a Bacillus sp. strain isolated in Córdoba, Argentina against Macrophomina phaseolina (Tassi) Goid. Rev Argent Microbiol. 2017;49(4):402–403. https://doi.org/10.1016/j.ram.2016.08.008

Fiddaman PJ, Rossall S. The production of antifungal volatiles by Bacillus subtilis. J Appl Microbiol. 1993;74(2):119–126.

Fu G, Ma J, Wang L, Yang X, Liu J, Zhao X. Effect of Degradation of Zearalenone-Contaminated Feed by Bacillus licheniformis CK1 on Postweaning Female Piglets. Toxins. 2016;8(10):300. https://doi.org/10.3390/toxins8100300

Gautam S, Chauhan A, Sharma R, Sehgal R, Shirkot CK. Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microb. Pathog. 2019;130:196–203. https://doi.org/10.1016/j.micpath.2019.03.006

Gomaa EZ. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J Microbiol. 2012;50(1):103–111. https://doi.org/10.1007/s12275-012-1343-y

Gong W, Wang J, Chen Z, Xia B, Lu G. Solution structure of LCI, a novel antimicrobial peptide from Bacillus subtilis. Biochemistry. 2011;50(18):3621–3627. https://doi.org/10.1021/bi200123w

Gudzenko OV, Varbanets LD, Ivanytsia VO, Shtenikov MD. Representatives of Bacillus from DeepWater Bottom Sediments of the Black Sea — Producers Elastase, Fibrin(ogen)ases, and Collagenases. Microbiological Journal. 2024;3:51–57. https://doi.org/10.15407/microbiolj86.03.051

Guleria S, Walia A, Chauhan A, Shirkot CK. Molecular characterization of alkaline protease of Bacillus amyloliquefaciens SP1 involved in biocontrol of Fusarium oxysporum. Int. J. Food Microbiol. 2016;232:134–143.

Guo Q, Li Y, Lou Y, Shi M, Jiang Y, Zhou J, Sun Y, Xue Q, Lai H. Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease. Appl. Soil Ecol. 2019;137:154–166. https://doi.org/10.1016/j.apsoil.2019.01.015

Guo S, Tariq A, Liao J, Yang A, Jiang X, Yin Y, Shi Y, Li C, Pan J, Han D. Identification and Antagonistic Potential of Bacillus atrophaeus against Wheat Crown Rot Caused by Fusarium pseudograminearum. Agronomy. 2024;14(9):2135–2116. https://doi.org/10.3390/agronomy14092135

Hafeez FY, Yasmin S, Ariani D, Zafar Y. Plant growthpromoting bacteria as biofertilizer. EDP Sciences/INRA. 2006;26(2):143–150. https://doi.org/10.1051/agro:2006007

Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X. Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett. Appl. Microbiol. 2009;48(2):253–260. https://doi.org/10.1111/j.1472-765X.2008.02524.x

Hassall CH, Subtilin C. An Antibiotic Concentrate from Bacillus subtilis. Nature. 1948;161:317–318.

Hu LB, Zhang T, Yang ZM, Zhou W, Shi ZQ. Inhibition of fengycins on the production of fumonisin B1 from Fusarium verticillioides. Lett Appl Microbiol. 2009;48(1):84–9. https://doi.org/10.1111/j.1472-765X.2008.02493.x

Hu X, Boyer GL. Siderophore-mediated aluminum uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol. 1996;62(11):4044–4048.

Iloabuchi K, Spiteller D. The Epiphyte Bacillus sp. G2112 Produces a Large Diversity of Nobilamide Peptides that Promote Biofilm Formation in Pseudomonads and Mycobacterium aurum. Biomolecules. 2024;14:1244. https://doi.org/10.3390/biom14101244

Ito T. Enzymatic determination of itoic acid, a Bacillus subtilis siderophore, and 2,3-dihydroxybenzoic acid. Appl. Environ. Microbiol. 1993;59(7):2343–2345.

Izquierdo-García LF, González-Almario A, Cotes AM, Moreno-Velandia CA. Trichoderma virens Gl006 and Bacillus velezensis Bs006: a compatible interaction controlling Fusarium wilt of cape gooseberry. Sci. Rep. 2020;10(1):6857. https://doi.org/10.1038/s41598-020-63689-y

Ji C, Zhang M, Kong Z, Chen X, Wang X, Ding W, Lai H, Guo Q. Genomic analysis reveals potential mechanisms underlying promotion of tomato plant growth and antagonism of soilborne pathogens by Bacillus amyloliquefaciens Ba13. Microbiol Spectr. 2021;9:e01615-21. https://doi.org/10.1128/Spectrum.01615-21

Innocenti G, Roberti R, Montanari M, Zakrisson E. Efficacy of microorganisms antagonistic to Rhizoctonia cerealis and their cell wall degrading enzymatic activities. Mycol. Res. 2003;107:421–427. https://doi.org/10.1017/s0953756203007640

Karuppiah V, Sun J, Li T, Vallikkannu M, Chen J. Co-cultivation of Trichoderma asperellum GDFS1009 and Bacillus amyloliquefaciens 1841 causes differential gene expression and improvement in the wheat growth and biocontrol activity. Front. Microbiol. 2019;10(1068). https://doi.org/10.3389/fmicb.2019.01068

Kenig M, Vandamme E, Abraham EP. The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. J. Gen. Microbiol. 1976;94:46–54. https://doi.org/10.1099/00221287-94-1-46

Kloepper J, Ryu C, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 2004;94:1259–1266.

Köhl J, Ravensberg W. Microbial bioprotectants for plant disease management, Burleigh Dodds Science Publishing, Cambridge, UK; 2022.

Korzh YuV, Dragovoz IV, Avdeeva LV. Lytic Exoenzymes of Soil Strains of Bacillus Representatives and Manifestations of their Biological Activity. Mikrobiol. Z. 2021;83(4):54–62. https://doi.org/10.15407/microbiolj83.04.054

Kumar P, Khare S, Dubey RC. Diversity of Bacilli from Disease Suppressive Soil and their Role in Plant Growth Promotion and Yield Enhancement. New York Science Journal. 2012;5(1):90–111.

Lahlali R, Peng G, McGregor L, Gossen B, Hwang S, McDonald M. Mechanisms of the biofungicide Serenade (Bacillus subtilis QST713) in suppressing clubroot. Biocontr. Sc. Technol. 2011;21:1351–1362. https://doi.org/10.1080/09583157.2011.618263

Le Mire G, Siah A, Brisset M-N, Gaucher M, Deleu M, Jijakli M. Surfactin protects wheat against Zymoseptoria tritici and activates both salicylic acid- and jasmonic acid-dependent defense responses. Agriculture. 2018;8(1):1–14. https://doi.org/10.3390/agriculture8010011

Li XY, Wang YH, He YQ. Diversity and active mechanism of fengycin-type cyclopeptides from Bacillus subtilis XF-1 against Plasmodiophora brassicae. J. Microbiol. Biotechnol. 2013;23:313–321. https://doi.org/10.4014/jmb.1208.08065

Lim SM., Yoon M, Choi GJ, Choi YH, Jang KS, Shin TS, Park HW, Yu NH, Kim YH, Kim JC. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathol. J. 2017;33(5):488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073

Lin C, Tsai CH, Chen PY, Wu CY, Chang YL, Yang YL, Chen YL. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE. 2018;13(4):e0196520. https://doi.org/10.1371/journal.pone.0196520

Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J. Biotechnol. 2017;249:20–24. https://doi.org/10.1016/j.jbiotec.2017.03.018

Liu Y, Feng H, Fu R, Zhang N, Du W, Shen Q, Zhang R. Induced rootsecreted D-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner. Appl. Microbiol. Biotechnol. 2020;104(2):785–797. https://doi.org/10.1007/s00253-019-10265-8

Lizárraga-Sánchez GJ, Leyva-Madrigal KY, Pánchez-Peña S, Quiroz-Figueroa FR, Maldonado-Mendoza IE. Bacillus cereus sensu lato strain B25 controls maize stalk and ear rot in Sinaloa, Mexico. Field Crops Res. 2015;76:11–21. https://doi.org/10.1016/j.fcr.2015.02.015

Lugtenberg B, Kamilova F. Plant-Growth-Promoting Rhizobacteria. Annu. Rev. Microbiol. 2009;63:541–556. https://doi.org/10.1146/annurev.micro.62.081307.162918

Ma X, Zou D, Ji A, Jiang C, Zhao Z, Ding X, Han Z, Bao P, Chen K, Ma A, Wei X. Identification of a Novel Chitinase from Bacillus paralicheniformis: Gene Mining, Sequence Analysis, and Enzymatic Characterization. Foods. 2024;13(11),1777: https://doi.org/10.3390/foods13111777

Mari M, Guizzardi M, Pratella GC. Biological control of gray mold in pears by antagonistic bacteria. Biol. Control. 1996;7:30–37.

May JJ, Wendrich TM, Marahiel MA. The dhb Operon of Bacillus subtilis Encodes the Biosynthetic Template for the Catecholic Siderophore 2,3-Dihydroxybenzoate-Glycine-Threonine Trimeric Ester Bacillibactin. Journal of Biological Chemistry. 2001;276(10):7209–7217. https://doi.org/10.1074/jbc.M009140200

Medeot DB, Fernandez M, Morales G.M, Jofré E. Fengycins from Bacillus amyloliquefaciens MEP 2 18 Exhibit Antibacterial Activity by Producing Alterations on the Cell Surface of the Pathogens Xanthomonas axonopodis pv. vesicatoria and Pseudomonas aeruginosa PA01. Front. Microbiol. 2020;10(3107):1–12. https://doi.org/10.3389/fmicb.2019.03107

Miljaković D, Marinković J, Balešević-Tubić S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms. 2020;8(7):1–19. https://doi.org/10.3390/microorganisms8071037

Moyne AL, Cleveland TE, Tuzun S. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett. 2004;234:43–49. https://doi.org/10.1111/j.1574-6968.2004.tb09511.x

Mubarik RE, Ambarsari NR, Wahyudi AT. Antagonistic activity of glucanolytic bacteria Bacillus subtilis W3.15 against Fusarium oxysporum and its enzyme characterization. Biodiversitas. 2021;22:4067–4077. https://doi.org/10.13057/biodiv/d220956

Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 2007;9(4):1084–1090. https://doi.org/10.1111/j.1462-2920.2006.01202.x

Palazzinia JM, Dunlap CA, Bowmanc MJ, Chulze SN. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencingand secondary metabolite cluster profiles. Microbiological Research. 2016;192:30–36.

Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res. 2005;160:127–133. https://doi.org/10.1016/j.micres.2004.10.003

Patel S, Rahul SN. Role of microbial insecticides in insect pest management. Pop Kheti. 2020;8:88–92.

Peng G. Zhao X, Li Y, Wang R, Huang Y, Qi G. Engineering Bacillus velezensis with high production of acetoin primes strong induced systemic resistance in Arabidopsis thaliana. Microbiol. Res. 2019;227:1–12. https://doi.org/10.1016/j.micres.2019.126297

Putri RE, Mubarik, NR, Ambarsari L, Wahyudi A. Antagonistic activity of glucanolytic bacteria Bacillus subtilis W3.15 against Fusarium oxysporum and its enzyme characterization. Biodiversitas. 2021;22 (9):4067–4077. https://doi.org/10.13057/biodiv/d220956

Qi G, Zhu F, Du P, Yang X, Qiu D, Yu Z, Chen J, Zhao X. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides. 2010;31(11):1978–1986. https://doi.org/10.1016/j.peptides.2010.08.003

Raafat, M. M., Ali-Tammam, M., & Ali, A. E. Quorum quenching activity of Bacillus cereus isolate 30b confers antipathogenic effects in Pseudomonas aeruginosa. Infect. Drug Resist. 2019;12:1583–1596. https://doi.org/10.2147/IDR.S182889

Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact. 2007;20(4):430–40. https://doi.org/10.1094/MPMI-20-4-0430

Ruiu L. Plant-growth-promoting bacteria (PGPB) against insects and other agricultural pests. Agronomy. 2020;10(6):1–12. https://doi.org/10.3390/agronomy10060861

Saber WIA, Ghoneem KM, Al-Askar AA, Rashad YM, Ali AA, Rashad EM. Chitinase production by Bacillus subtilis ATCC 11774 and its effect on biocontrol of Rhizoctonia diseases of potato. Acta Biol. Hung. 2015;66(4):436–448. https://doi.org/10.1556/018.66.2015.4.8

Saechow S, Thammasittirong A, Kittakoop P, Prachya S, Thammasittirong SN. Antagonistic Activity against Dirty Panicle Rice Fungal Pathogens and Plant Growth-Promoting Activity of Bacillus amyloliquefaciens BAS23. J Microbiol Biotechnol. 2018;28(9):1527–1535. https://doi.org/10.4014/jmb.1804.04025

Samada LH, Tambunan USF. Biopesticides as promising alternatives to chemical pesticides: a review of their current and future status. Online J Biol Sci. 2020;20:66–76. https://doi.org/10.3844/ojbsci.2020.66.76

Sarwar A, Hassan MN, Imran M, Iqbalc M, Majeed S, Brader G, Sessitsch A, Hafeez FY. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiological Research. 2018;209:1–13. https://doi.org/10.1016/j.micres.2018.01.006

Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, Schwecke T, Herfort S, Lasch P, Borriss R. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol. 2014;196(10):1842–1852. https://doi.org/10.1128/JB.01474-14

Seydlova G, Svobodova J. Review of surfactin chemical properties and the potential biomedical applications. Cent. Eur. J. Med. 2008;312:123–133. https://doi.org/10.2478/s11536-008-0002-5

Shen Y, Li J, Xiang J, Wang J, Yin K, Liu Q. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express. 2019;9(1):117. https://doi.org/10.1186/s13568-019-0822-5

US Food and Drug Administration, 2010. Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Products for Human Consumption and Grains By-products Used for Animal Feed. US Food and Drug Administration, Silver Spring MD, USA.

Wang JQ, Yang F, Yang PL, Liu J, Lv ZH. Microbial Reduction of Zearalenone by a new Isolated Lysinibacillus sp. ZJ-2016-1. World Mycotoxin J. 2018;11:571–578. https://doi.org/10.3920/WMJ2017.2264

Wang N, Liu M, Guo L, Yang X, Qiu D. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. Int. J. Biol. Sci. 2016;12(6):757–767. https://doi.org/10.7150/ijbs.14333

Wang T, Liu XH, Wu MB, Ge S. Molecular insights into the antifungal mechanism of Bacilysin. J. Mol. Model. 2018;24:118. https://doi.org/10.1007/s00894-018-3645-4

Wu Q, Ni M, Dou K, Tang J, Ren J, Yu C, Chen J. Co-culture of Bacillus amyloliquefaciens accC11060 and Trichoderma asperellum GDFS1009 enhanced pathogen-inhibition and amino acid yield. Microb. Cell Fact. 2018;17(1):155. https://doi.org/10.1186/s12934-018-1004-x

Zhang D, Yu S, Yang Y, Zhang J, Zhao D, Pan Y, Fan S, Yang Z, Zhu J. Antifungal effects of volatiles produced by Bacillus subtilis against Alternaria solani in potato. Front. Microbiol. 2020;11(1196):1196. https://doi.org/10.3389/fmicb.2020.01196

##submission.downloads##

Опубліковано

2025-04-30

Номер

Розділ

ОГЛЯДОВІ ПРАЦІ