МОРСЬКІ МІКСОБАКТЕРІЇ – УНІКАЛЬНА ГРУПА З ВИСОКИМ БІОСИНТЕТИЧНИМ ПОТЕНЦІАЛОМ

Автор(и)

  • В. Ю. Іваніца Одеський національний університет імені І. І. Мечникова, Україна
  • І. В. Страшнова Одеський національний університет імені І. І. Мечникова, Україна https://orcid.org/0000-0002-4264-466X

DOI:

https://doi.org/10.18524/2307-4663.2025.3(65).344039

Ключові слова:

міксобактерії, морські міксобактерії, біоактивні вторинні метаболіти, гідролітичні ферменти

Анотація

Необхідність у нових антимікробних препаратах зумовлює пошук нових біологічно активних речовин. Найперспективнішим джерелом і ресурсом для інноваційних біоактивних натуральних продуктів є і залишаються бактерії, серед яких чільне місце посідають міксобактерії. Огляд присвячено особливостям біології міксобактерій, які відомі не лише своїм складним хижацьким способом життя, але й, що ще важливіше, своєю здатністю синтезувати позаклітинні гідролітичні ферменти і різноманітні вторинні метаболіти, структурні особливості та механізм дії багатьох із яких є унікальним. Особливу увагу приділено галофільним/галотолерантним міксобактеріям, виділеним із морського середовища, які, за даними геномно-метаболомного аналізу, мають потужний біосинтетичний потенціал і є перспективним джерелом нових сполук з різноманітним біоактивним спектром та унікальним механізмом дії.

Посилання

Fomin OO, Fomina NS, Kovalchuk VP, Aslanian SA. Mikroflora suchasnoi boiovoi rany ta yii chutlyvist do antybiotykiv. Chastyna I [Microflora of a modern combat wound and its sensitivity to antibiotics. Part I]. Ukr. Med. Chasopys. 2023;3(155),V/VI:82–85. https://doi.org/10.32471/umj.1680-3051.155.244023 [in Ukrainian].

Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A et al. Antimicrobial resistance: impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health. 2024;2:1–9. https://doi.org/10.1016/j.glmedi.2024.100081

Albataineh H, Stevens DC. Marine myxobacteria: a few good halophiles. Mar Drugs. 2018;16(6):1–11. https://doi.org/10.3390/md16060209

Berleman JE, Kirby JR. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev. 2009;33(5):942–957. https://doi.org/10.1111/j.1574-6976.2009.00185.x

Bhat MA, Mishra AK, Bhat MA, Banday MI, Bashir O et al. Myxobacteria as a source of new bioactive compounds: a perspective study. Pharmaceutics. 2021;13(8):1265. https://doi.org/10.3390/pharmaceutics13081265

Brinkhoff T, Fischer D, Vollmers J, Voget S, Beardsley C et al. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. The ISME Journal. 2012;6(6):1260–1272. https://doi.org/10.1038/ismej.2011.190

Chan YA, Podevels AM, Kevany BM, Thomas MG. Biosynthesis of polyketide synthase extender units. Nat Prod Rep. 2009;26(1):90–114. https://doi.org/10.1039/b801658p

Chanana S, Braun DR, Rajski SR, Bugni TS. Draft genome sequence of Pseudenhygromyxa sp. strain WMMC2535, a marine ascidian-associated bacterium. Microbiol Resour Announc. 2020;9(34):e00657–20. https://doi.org/10.1128/MRA.00657-20

Chen J, Nan B. Flagellar motor transformed: biophysical perspectives of the Myxococcus xanthus gliding mechanism. Front Microbiol. 2022;13:891694. https://doi.org/10.3389/fmicb.2022.891694

Dávila-Céspedes A, Hufendiek P, Crüsemann M, Schäberle TF, König GM. Marine-derived myxobacteria of the suborder Nannocystineae: an underexplored source of structurally intriguing and biologically active metabolites. Beilstein J. Org. Chem. 2016;12:969–984. https://doi.org/10.3762/bjoc.12.96

Dawid W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev. 2000;24(4):403–427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x

Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359(6373):320–325. https://doi.org/10.1126/science.aap9516

Felder S, Dreisigacker S, Kehraus S, Neu E, Bierbaum G et al. Salimabromide: unexpected chemistry from the obligate marine myxobacterium Enhygromxya salina. Chemistry. 2013;19(28):9319–9324. https://doi.org/10.1002/chem.201301379

Felder S, Kehraus S, Neu E, Bierbaum G, Schäberle TF, König GM. Salimyxins and enhygrolides: antibiotic, sponge-related metabolites from the obligate marine myxobacterium Enhygromyxa salina. ChemBioChem. 2013;14(11):1363–1371. https://doi.org/10.1002/cbic.201300268

Fudou R, Iizuka T, Yamanaka S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 1. Fermentation and biological characteristics. J Antibiot (Tokyo). 2001;54(2):149–152. https://doi.org/10.7164/antibiotics.54.149

Fudou R, Iizuka T, Sato S, Ando T, Shimba N, Yamanaka S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J Antibiot (Tokyo). 2001;54(2):153–156. https://doi.org/10.7164/antibiotics.54.153

Fudou R, Jojima Y, Iizuka T, Yamanaka S. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov.: novel moderately halophilic myxobacteria isolated from coastal saline environments. J Gen Appl Microbiol. 2002;48(2):109–116. https://doi.org/10.2323/jgam.48.109

Furness E, Whitworth DE, Zwarycz A. Predatory interactions between myxobacteria and their prey / In: E Jurkevitch, R Mitchell, eds. The ecology of predation at the microscale. Cham: Springer; 2020. p. 1–36. https://doi.org/10.1007/978-3-030-45599-6_1

Gan K-J, Zhu Y, Shi G, Wu C, Ni F-Q. Evolution of the short enantioselective total synthesis of the unique marine myxobacteria polyketide salimabromide. Chin. J. Chem. 2024;42:1–13. https://doi.org/10.1002/cjoc.202400XXX

Garcia R, Pistorius D, Stadler M, Müller R. Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol. 2011;193(8):1930–1942. https://doi.org/10.1128/JB.01091-10

Garcia R, La Clair JJ, Müller R. Future directions of marine myxobacterial natural product discovery inferred from metagenomics. Mar Drugs. 2018;16(9):303. https://doi.org/10.3390/md16090303

Gemperlein K, Zaburannyi N, Garcia R, La Clair JJ, Müller R. Metabolic and biosynthetic diversity in marine myxobacteria. Mar Drugs. 2018;16(9):314. https://doi.org/10.3390/md16090314

Gerth K, Müller R. Moderately thermophilic myxobacteria: novel potential for the production of natural products isolation and characterization. Environ Microbiol. 2005;7(6):874–880. https://doi.org/10.1111/j.1462-2920.2005.00761.x

Han K, Li Zf, Peng R, Zhu Lp, Zhou T et al. Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep. 2013;3:2101. https://doi.org/10.1038/srep02101

Herrmann J, Abou Fayad A, Müller R. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 2017;34:135–160. https://doi.org/10.1039/C6NP00106H

Hesseler M, Bogdanović X, Hidalgo A, Berenguer J, Palm GJ et al. Cloning, functional expression, biochemical characterization, and structural analysis of a haloalkane dehalogenase from Plesiocystis pacifica SIR-1. Appl Microbiol Biotechnol. 2011;91(4):1049–1060. https://doi.org/10.1007/s00253-011-3328-x

Hug JJ, Kjaerulff L, Garcia R, Müller R. New deoxyenhygrolides from Plesiocystis pacifica provide insights into butenolide core biosynthesis. Mar. Drugs. 2022;20(1):72. https://doi.org/10.3390/md20010072

Iizuka T, Jojima Y, Fudou R, Yamanaka S. Isolation of myxobacteria from the marine environment. FEMS Microbiology letters. 1998;169(2):317–322. https://doi.org/10.1111/j.1574-6968.1998.tb13335.x

Iizuka T, Jojima Y, Fudou R, Tokura M, Hiraishi A, Yamanaka S. Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. Syst Appl Microbiol. 2003;26(2):189–196. https://doi.org/10.1078/072320203322346038

Iizuka T, Jojima Y, Fudou R, Hiraishi A, Ahn JW, Yamanaka S. Plesiocystis pacifica gen. nov., sp. nov., a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. Int J Syst Evol Microbiol. 2003;53(Pt 1):189–195. https://doi.org/10.1099/ijs.0.02418-0

Iizuka T, Fudou R, Jojima Y, Ogawa S, Yamanaka S et al. Miuraenamides A and B, novel antimicrobial cyclic depsipeptides from a new slightly halophilic myxobacterium: taxonomy, production, and biological properties. J. Antibiot. 2006;59(7):385–391. https://doi.org/10.1038/ja.2006.55

Iizuka T, Tokura M, Jojima Y, Hiraishi A, Yamanaka S, Fudou R. Enrichment and phylogenetic analysis of moderately thermophilic myxobacteria from hot springs in Japan. Microbes Environ. 2006;21(3):189–199. https://doi.org/10.1264/jsme2.21.189

Iizuka T, Jojima Y, Hayakawa A, Fujii T, Yamanaka S, Fudou R. Pseudenhygromyxa salsuginis gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. Int J Syst Evol Microbiol. 2013:63(Pt 4):1360–1369. https://doi.org/10.1099/ijs.0.040501-0

Ivanova N, Daum C, Lang E, Abt B, Kopitz M et al. Complete genome sequence of Haliangium ochraceum type strain (SMP-2). Stand Genomic Sci. 2010;2(1):96–106. https://doi.org/10.4056/sigs.69.1277

Kaiser D. Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol. 2003;1(1):45–54. https://doi.org/10.1038/nrmicro733

Kaiser D. Myxococcus – from single-cell polarity to complex multicellular patterns. Annu Rev Genet. 2008;42:109–130. https://doi.org/10.1146/annurev.genet.42.110807.091615

Kimura Y, Kawasaki S, Yoshimoto H, Takegawa K. Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus. J Bacteriol. 2010;192(5):1467–1470. https://doi.org/10.1128/JB.01118-09

Komaki H, Fudou R, Iizuka T, Nakajima D, Okazaki K et al. PCR detection of type I polyketide synthase genes in myxobacteria. Appl Environ Microbiol. 2008;74(17):5571–5574. https://doi.org/10.1128/AEM.00224-08

Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K et al. Release of arsenic from soil by a novel dissimilatory arsenate-reducing bacterium, Anaeromyxobacter sp. strain PSR-1. Appl Environ Microbiol. 2013;79(15):4635–4642. https://doi.org/10.1128/AEM.00693-13

Kundim BA, Itou Y, Sakagami Y, Fudou R, Iizuka T et al. New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium. J Antibiot (Tokyo). 2003;56(7):630–638. https://doi.org/10.7164/antibiotics.56.630

Landwehr W, Wolf C, Wink J. Actinobacteria and Myxobacteria – two of the most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol. 2016;398:273–302. https://doi.org/10.1007/82_2016_503

Li B, Yao Q, Zhu H. Approach to analyze the diversity of myxobacteria in soil by semi-nested PCR-denaturing gradient gel electrophoresis (DGGE) based on taxon-specific gene. PLoS One. 2014;9(10):108877. https://doi.org/10.1371/journal.pone.0108877

Li SG, Zhou XW, Li PF, Han K, Li W et al. The existence and diversity of myxobacteria in lake mud – a previously unexplored myxobacteria habitat. Environ Microbiol Rep. 2012;4(6):587–595. https://doi.org/10.1111/j.1758-2229.2012.00373.x

Li Y-Z, Hu W, Zhang Y-Q, Qiu Z, Zhang Y, Wu BH. A simple method to isolate salt-tolerant myxobacteria from marine samples. J Microbiol Methods. 2002;50(2):205–209. https://doi.org/10.1016/s0167-7012(02)00029-5

Li Z, Zhang L, Ye X, Huang Y, Ji Y et al. Myxobacteria: versatile cell factories of novel commercial enzymes for bio-manufacturing. Biotechnology advances. 2025;82:108594. https://doi.org/10.1016/j.biotechadv.2025.108594

Liu Y, Ojika M. Genomic analysis of the rare slightly halophilic myxobacterium Paraliomyxa miuraensis SMH-27-4, the producer of the antibiotic miuraenamide A. Microorganisms. 2023;11(2):371. https://doi.org/10.3390/microorganisms11020371

Marcos-Torres FJ, Volz C, Müller R. An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication. Nat Commun. 2020;11:5563. https://doi.org/10.1038/s41467-020-19384-7

Marshall RC, Whitworth DE. Is “Wolf-Pack” predation by antimicrobial bacteria cooperative? Cell behaviour and predatory mechanisms indicate profound selfishness, even when working alongside kin. Bioessays. 2019;41(4):e1800247. https://doi.org/10.1002/bies.201800247

Meiser P, Bode HB, Müller R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci USA. 2006;103(50):19128–19133. https://doi.org/10.1073/pnas.0606039103

Meng K, Jiang W, Cai H, Yang Z, Yuan Y, Su Z. Diversity of myxobacteria isolated from Weizhou Island, Guangxi, and their potential biological activities. Arch Biol Sci. 2025;77(2):123–36. https://doi.org/10.2298/ABS250324010M

Miyanaga A, Kudo F, Eguchi T. Protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrid assembly lines. Nat. Prod. Rep. 2018;35:1185–1209. https://doi.org/10.1039/C8NP00022K

Moghaddam JA, Boehringer N, Burdziak A, Kunte HJ, Galinski EA, Schäberle TF. Different strategies of osmoadaptation in the closely related marine myxobacteria Enhygromyxa salina SWB007 and Plesiocystis pacifica SIR-1. Microbiology (Reading). 2016;162(4):651–661. https://doi.org/10.1099/mic.0.000250

Moghaddam AJ, Crüsemann M, Alanjary M, Harms H, Dávila-Céspedes A et al. Analysis of the genome and metabolome of marine myxobacteria reveals high potential for biosynthesis of novel specialized metabolites. Sci Rep. 2018;8(1):16600. https://doi.org/10.1038/s41598-018-34954-y

Moghaddam AJ, Poehlein A, Fisch K, Alanjary M, Daniel R et al. Draft genome sequences of the obligatory marine myxobacterial strains Enhygromyxa salina SWB005 and SWB007. Genome Announc. 2018;6(17):e00324-18. https://doi.org/10.1128/genomeA.00324-18

Mohr KI. Diversity of myxobacteria – we only see the tip of the iceberg. Microorganisms. 2018;6(3):84. https://doi.org/10.3390/microorganisms6030084

Murphy P, Comstock J, Khan T, Zhang J, Welch R, Igoshin OA. Cell behaviors underlying Myxococcus xanthus aggregate dispersal. mSystems. 2023;8(5):e00425-00423. https://doi.org/10.1128/msystems.00425-23

Ojika M, Inukai Y, Kito Y, Hirata M, Iizuka T, Fudou R. Miuraenamides: antimicrobial cyclic depsipeptides isolated from a rare and slightly halophilic myxobacterium. Chem Asian J. 2008;3(1):126–133. https://doi.org/10.1002/asia.200700233

Payne JAE, Schoppet M, Hansen MH, Cryle MJ. Diversity of nature’s assembly lines – recent discoveries in non-ribosomal peptide synthesis. Mol. BioSyst. 2017;13:9–22. https://doi.org/10.1039/C6MB00675B

Ravenschlag K, Sahm K, Pernthaler J, Amann R. High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol. 1999;65(9):1–8. https://doi.org/10.1128/AEM.65.9.3982-3989.1999

Ronald G, La Clair JJ, Müller R. Future directions of marine myxobacterial natural product discovery inferred from metagenomics. Mar. Drugs. 2018;16(9):303. https://doi.org/10.3390/md16090303

Saggu SK, Nath A, Kumar S. Myxobacteria: biology and bioactive secondary metabolites. Research in Microbiology. 2023;174:104079. https://doi.org/10.1016/j.resmic.2023.104079

Saha S. Exploring myxobacteria for drugs. World Journal of Pharmaceutical and Life Sciences. 2024;10(6):289–315. https://www.wjpls.org/download/article/108052024/1717497743.pdf

Salmanov AG, Shchehlov DV, Mamonova M, Shcheholkov YE, Litus VI et al. Healthcare associated infections in patients with combat wounds and antimicrobial resistance of the responsible pathogens in Ukraine: results of a multicenter study (2022-2024). Wiad Lek. 2025;78(8):1624–1634. https://doi.org/10.36740/WLek/209517

Sanford RA, Cole JR, Tiedje JM. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol. 2002;68(2):893–900. https://doi.org/10.1128/AEM.68.2.893-900.2002

Schäberle TF, Goralski E, Neu E, Erol Ö, Hölzl G et al. Marine myxobacteria as a source of antibiotics – comparison of physiology, polyketide-type genes and antibiotic production of three new isolates of Enhygromyxa salina. Mar. Drugs. 2010;8(9):2466–2479. https://doi.org/10.3390/md8092466

Schäberle TF, Lohr F, Schmitz A, König GM. Antibiotics from myxobacteria. Nat. Prod. Rep. 2014;31:953–972. https://doi.org/10.1039/C4NP00011K

Shrivastava A, Sharma RK. Myxobacteria and their products: current trends and future perspectives in industrial applications. Folia Microbiol (Praha). 2021;66(4):483–507. https://doi.org/10.1007/s12223-021-00875-z

Sorokoumova LK, Kozhokaru AA, Yaremin SYu, Zhorniak OI. Monitoring of the dynamics of antimicrobial resistance among wounded in the conditions of armed conflict. Ukrainian Journal of Military Medicine. 2025;6(2):105–110. https://doi.org/10.46847/ujmm.2025.2(6)-105

Sumiya E, Shimogawa H, Sasaki H, Tsutsumi M, Yoshita K et al. Cell-morphology profiling of a natural product library identifies bisebromoamide and miuraenamide A as actin filament stabilizers. ACS Chem Biol. 2011;6(5):425–431. https://doi.org/10.1021/cb1003459

Sun Y, Feng Z, Tomura T, Suzuki A, Miyano S et al. Heterologous production of the marine myxobacterial antibiotic haliangicin and its unnatural analogues generated by engineering of the biochemical pathway. Sci Rep. 2016;6:22091. https://doi.org/10.1038/srep22091

Sun Y, Tomura T, Sato J, Iizuka T, Fudou R, Ojika M. Isolation and biosynthetic analysis of haliamide, a new PKS-NRPS hybrid metabolite from the marine myxobacterium Haliangium ochraceum. Molecules. 2016;21(1):59. https://doi.org/10.3390/molecules21010059

Swetha RG, Arakal BS, Rajendran S, Sekar K, Whitworth DE et al. MyxoPortal: a database of myxobacterial genomic features. Database. 2024;2024:baae056. https://doi.org/10.1093/database/baae056

Timmermans ML, Paudel YP, Ross AC. Investigating the biosynthesis of natural products from marine proteobacteria: a survey of molecules and strategies. Mar Drugs. 2017;15(8):235. https://doi.org/10.3390/md15080235

Tomura T, Nagashima S, Yamazaki S, Iizuka T, Fudou R, Ojika M. An unusual diterpene—enhygromic acid and deoxyenhygrolides from a marine myxobacterium, Enhygromyxa sp. Mar. Drugs. 2017;15(4):109. https://doi.org/10.3390/md15040109

Treude N, Rosencrantz D, Liesack W, Schnell S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol. 2003;44(2):261–269. https://doi.org/10.1016/S0168-6496(03)00048-5

Wang B, Hu W, Liu H, Zhang CY, Zhao JY et al. Adaptation of salt-tolerant Myxococcus strains and their motility systems to the ocean conditions. Microb Ecol. 2007;54(1):43–51. https://doi.org/10.1007/s00248-006-9169-y

Wang C, Xiao Y, Wang Y, Liu Y, Yao Q, Zhu H. Comparative genomics and transcriptomics insight into myxobacterial metabolism potentials and multiple predatory strategies. Front Microbiol. 2023;14:1146523. https://doi.org/10.3389/fmicb.2023.1146523

Wang D-G, Wang C-Y, Hu J-Q, Wang J-J, Liu W-C. Constructing a myxobacterial natural product database to facilitate NMR-based metabolomics bioprospecting of myxobacteria. Anal. Chem. 2023;95(12):5256–5266. https://doi.org/10.1021/acs.analchem.2c05145

Wang C-Y, Hu J-Q, Wang D-G, Li Y-Z, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat. Prod. Rep. 2024;41:905–934. https://doi.org/10.1039/D3NP00062A

Weissman KJ, Müller R. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat Prod Rep. 2010;27(9):1276–1295. https://doi.org/10.1039/c001260m

Whitworth DE, Jurkevitch E, Pérez J, Fuhrmann G, Koval SF. Editorial: mechanisms of prokaryotic predation. Front. Microbiol. 2020;11:2071. https://doi.org/10.3389/fmicb.2020.02071

Wrótniak-Drzewiecka W, Brzezińska AJ, Dahm H, Ingle AP, Rai M. Current trends in myxobacteria research. Ann Microbiol. 2016;66:17–33. https://doi.org/10.1007/s13213-015-1104-3

Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature. 2009;462(7276):1056–1060. https://doi.org/10.1038/nature08656

Xiao Y, Wei X, Ebright R, Wall D. Antibiotic production by myxobacteria plays a role in predation. J Bacteriol. 2011;193(18):4626–4633. https://doi.org/10.1128/jb.05052-11

Xiao Y, Gerth K, Müller R, Wall D. Myxobacterium-produced antibiotic TA (myxovirescin) inhibits type II signal peptidase. Antimicrob Agents Chemother. 2012;56(4):2014–2021. https://doi.org/10.1128/AAC.06148-11

Yamamoto E, Muramatsu H, Nagai K. Vulgatibacter incomptus gen. nov., sp. nov. and Labilithrix luteola gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of Vulgatibacteraceae fam. nov., Labilitrichaceae fam. nov. and Anaeromyxobacteraceae fam. nov. Int J Syst Evol Microbiol. 2014;64(Pt 10):3360–3368. https://doi.org/10.1099/ijs.0.063198-0

Zhang YQ, Li YZ, Wang B, Wu ZH, Zhang CY et al. Characteristics and living patterns of marine myxobacterial isolates. Appl Environ Microbiol. 2005;71(6):3331–3336. https://doi.org/10.1128/AEM.71.6.3331-3336.2005

Zusman DR, Scott AE, Yang Z, Kirby JR. Chemosensory pathways, motility and development in Myxococcus xanthus. Nat Rev Microbiol. 2007;5(11):862–872. https://doi.org/10.1038/nrmicro1770

List of Prokaryotic names with Standing in Nomenclature (LPSN). https://lpsn.dsmz.de

http://www.marinespecies.org

##submission.downloads##

Опубліковано

2025-12-20

Номер

Розділ

ОГЛЯДОВІ ПРАЦІ