МАТРИКС БІОПЛІВКИ – ХІМІЧНИЙ СКЛАД, СТРУКТУРА, ВЛАСТИВОСТІ

Автор(и)

  • М. Б. Галкін Одеський національний університет імені І.І. Мечникова, Ukraine https://orcid.org/0000-0002-4957-7148
  • В. О. Іваниця Одеський національний університет імені І.І. Мечникова, Ukraine https://orcid.org/0000-0001-5325-3800
  • Б. М. Галкін Одеський національний університет імені І.І. Мечникова, Ukraine https://orcid.org/0000-0002-3391-0938
  • Т. О. Філіпова Одеський національний університет імені І.І. Мечникова, Ukraine https://orcid.org/0000-0002-7034-3223

DOI:

https://doi.org/10.18524/2307-4663.2016.4(36).86349

Ключові слова:

біоплівка, матрикс, поліцукриди, білки, еДНК, ліпіди, біосурфактанти

Анотація

Біоплівки є спільнотами мікробних клітин, які беруть участь в різних процесах, в тому числі в біоремедіаціі стічних вод, стимулюванні зростання рослин, хронічних інфекціях і промислових обростаннях. Клітини-резиденти біоплівки занурені в гідратований екзополімерний матрикс, компоненти якого синтезуються самими мікроорганізмами. Матрикс зазвичай містить поліцукриди, білки, нуклеїнові кислоти і ліпіди; він забезпечує механічну стабільність біоплівок, опосередковує їх адгезію до поверхонь і утворює компактну тривимірну полімерну структуру, яка забезпечує контакт між клітинами і їх транзиторне утримання в біоплівці. Матрикс виконує різні функції для спільноти: від забезпечення структурної жорсткості і захисту від зовнішнього середовища до контролю генної регуляції і адсорбції поживних речовин. Глибоке знання властивостей матриксу має виключно важливе значення для розробки нових стратегій контролю біоплівкових інфекцій, для промислового і біотехнологічного використання біоплівок. Це стосується структури окремих компонентів, характеру взаємодії між молекулами і тривимірної просторової організації.

Дана робота присвячена огляду сучасних уявлень щодо складу структури та властивостей матриксу біоплівки як мікросередовища для існування клітин мікроорганізмів.

Посилання

Adair CG, Gorman SP, Feron BM. Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intens. Care Med. 1999;25:1072–1076.

Böckelmann U, Janke A, Kuhn R, Neu TR, Wecke J,Lawrence JR, Szewzyk U. Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol. Lett. 2006;262:31–38.

Boles BR, Thoendel ., Singh P. Self-generated diversity produces “insurance effects” in biofilms communities. Proc. Natl Acad. Sci. USA. 2004;101:16630–16635.

Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol. Microbiol. 2006; 59:1229–1238.

Byrd MS, Sadovskaya I, Vinogradov E, Lu H. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol. Microbiol. 2009;73: 622–638.

Conrad A, Suutari MK, Keinänen MM, Cadoret A, Faure P, Mansuy-Huault L, Block JC Fatty acid lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids. 2003;38:1093–1105.

Danese PN, Pratt LA, Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J. Bacteriol. 2000;182:3593–3596.

Davey ME, O’Toole GA. Microbial Biofilms: from Ecology to Molecular Genetics. Microb. mol. boil. rev. 2000;64:847–867.

Davey ME, Cajazza NC, O´Toole, GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2003;185:1027–1036.

Decho AW, Visscher PT, Reid RP. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Paleogeogr. Paleoclimatol. Paleoecol. 2005;219:71–86.

Diggle SP, Stacey RE, Dodd C, Cámara M, Williams P, Winzer K. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 2006;8:1095–1104.

Flemming HC, Neu TR, Wozniak D. The EPS matrix: the house of biofilm cells. J. Bacteriol. 2007;189:7945–7947.

Frølund B, Palmgren R, Keiding K, Nielsen, PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res. 1996;30:1749–1758.

Gerbersdorf SU, Jancke T, Westrich B, Paterson DM. Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology. 2008;6:57–69.

Hall-Stoodley, Nistico L, Luanne KS. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiology. 2008;8:1–16.

Flemming HG, Jost Wingender J. The biofilm matrix. Nat. rev. microbial. 2010;8:623–633.

Higgins MJ, Novak JT. Characterization of exocellular protein and its role in bioflocculation. J. Environ. Eng. 1997;123:479–485.

Hohne DN, Younger GJ, Solomon MJ. Flexible multifluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir. 2009;25:7743–7751.

Izano EA, Amarante MA, Kher WB, Kaplan JB. Differential roles of polyN-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl. Environ. Microbiol. 2008;74:470–476.

Jahn A, Nielsen PH. Cell biomass and exopolymer composition in sewer biofilms. Water Sci. Technol. 1998;37:17–24.

Johansson EM, Crusz E, Kolomiets L, Buts RU, Kadam KM, Bartels SP, Diggle SP. Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB. Chem. Biol. 2008;15:1249–1257.

Klausen MM, Thomsen TR, Nielsen JL, Mikkelsen LH, Nielsen PH. Variations in microcolony strength of probe-defined bacteria in activated sludge flocs. FEMS Microbiol. Ecol. 2004;50:123–132.

Körstgens V, Flemming HC, Wingender J, Borchard W. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci. Technol. 2001;43:49–57.

Lasa I, Penadés JR. Bap: a family of surface proteins involved in biofilm formation. Res. Microbiol. 2006;157:99–107.

Laue H, Schenk A, Li H, Lambertsen L, Neu TR, Molin S, Ullrich MS. Contribution of alginate and levan production to biofilm formation by Pseudomonas syringae. Microbiology. 2006;152:2909–2918.

Lynch DJ, Fountain TL, Mazurkiewicz, Banas JA. Glucan-binding proteins are essential for shaping Streptococcus mutans biofilm architecture. FEMS Microbiol. Lett. 2007;268:158–165.

Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:1–11

Matsuyama T, Nakagawa Y. Surface-active exolipids: analysis of absolute chemical structures and biological functions. J. Microbiol. Methods. 1996:25:165–175.

Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC. The role of intermolecular interactions studies on model systems for bacterial biofilms. Int. J. Biol. Macromol. 1999;26:3–16.

Molin S, Tolker-Nielsen T. Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotechnol. 2003;14:255–261.

Mora P, Rosconi F, Fraguas FL, Castro-Sowinski S. Azospirillum brasilense Sp7 produces an outer-membrane lectin that specifically binds to surfaceexposed extracellular polysaccharide produced by the bacterium. Arch. Microbiol. 2008;189:519–524.

Neu TR, Poralla K. An amphiphilic polysaccharide from an adhesive Rhodococcus strain. FEMS Microbiol. Lett. 1988;49:389–392.

Neu TR, Dengler T, Jann B, Poralla K. Structural studies of an emulsionstabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. J. Gen. Microbiol. 1992;138:2531–2537.

O’Toole GA. To Build a Biofilm. J. of Bacteriol. 2003;185:2687–2689.

Or D, Phutane S, Dechesne A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J. 2007;6:298–305.

Otzen D, Nielsen PH. We find them here, we find them there: functional bacterial amyloid. Cell. Mol. Life Sci. 2007;65:910–927.

Pamp SJ, Gjermansen, M, Tolker-Nielsen T. In The Biofilm Mode of Life. Mechanisms and Adaptations / eds Kjelleberg, S., Givskov M. – Horizon Bioscience, Norfolk, UK. 2007:37–69

Potts M. Desiccation tolerance of prokaryotes. Microbiol. Rev. 1994;58:755–805.

Roberson EB, Firestone MK. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 1992;58:1284–1291.

Römling U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 2001;39:1452–1463.

Rupp ME, Ulphani JS, Fey PD, Mack D. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutination of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect. Immun. 1999;67:2627–2632.

Rupp CJ, Fux CA, Stoodley P. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl. Environ. Microbiol. 2005;71:2175–2178.

Russell RRB Bacterial Polysaccharides in Dental Plaque. In Bacterial Polysaccharides. Current Innovations and Future Trends / Ed. Ullrich, M. Caister Academic, Norfolk, UK. – 2009;143–156.

Ryder C, Byrd M, Wozniak D.J. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol. 2007;10:644–648.

Sand W, Gehrke T. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res. Microbiol. 2006;157:49–56.

van Schaik EJ, Giltner CL, Audette GF, Keizer DW, Bautista DL, Slupsky CM, Sykes BD, Irvin RT. DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J. Bacteriol. 2005;187:P. 1455–1464.

Schmitt J, Nivens D, White DC, Flemming, HC. Changes of biofilm properties in response to sorbed substances — an FTIR-ATR-study. Water Sci. Technol. 1995;32:149–155.

Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P. Commonality of elastic relaxation times in biofilms. Phys. Rev. Let. 2004;93:98–102.

Skillman L, Sutherland IW, Jonse MV. The role of exopolysaccharides in dual species biofilm development. J. Appl. Microbiol. 1999;85:13–18.

Steinberger RE, Holden PA. Extracellular DNA in single- and multiplespecies unsaturated biofilms. Appl. Environ. Microbiol. 2005;71:5404–5410.

Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 2003;29:361–367.

Sutherland IW. The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol. 2001;9:222–227.

Sutherland IW. In Comprehensive Glycoscience / ed. Kamerling, J. P. – Elsevier, Doordrecht. 2007;2:521–558.

Tamaru Y, Takami Y, Yoshida T, Sakamoto T. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 2005;71:7327–7333.

Tielker D, Hacker S, Loris R, Strathmann M, Wingender J, Wilhelm S., Rosenau F, Jaeger K. Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology. – 2005;151:1313–1323.

Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ. Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ. Microbiol. 2006;8:1997–2011.

VanHullebusch ED, Zandvoord MH, Lens PNL. Metal immobilization by biofilms: mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2004;2: P. 9–33.

Vaningelgem F, Zamfir M, Mozzi F, Adriany T, Vancanneyt M, Swings J, De Vuyst L. Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microbiol. 2004;70:900–912.

Watanabe M. Growth and flocculation of a marine photosynthetic bacterium Rhodovulum sp. Appl. Microbiol. Biotechnol. 1998;50:P. 682–691.

Watnik PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Mol. Microbiol. 1999;34:586–595.

Whitchurch CB, Tolker-Nielsen T, Ragas PS, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295:1487.

Wingender J, Jaeger KE, Flemming HC. In Microbial Extracellular Polymeric Substances. / eds Wingender J., Neu T., Flemming, H. C. – Springer, Heidelberg. 1999:P. 231–251.

Wingender J, Jaeger KE. In Encyclopedia of Environmen tal Microbiology. / ed. Bitton G. – Wiley, New York. 2002:1207–1223.

Wuertz S. A new method for extraction of extracellular polymeric sub stances from biofilms and activated sludge suitable for direct quantification of sorbed metals. Water Sci. Technol. 2001;43:25–34.

Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, TolkerNielsen T. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology. 2007;153:1318–1328.

Zhang X, Bishop P. Biodegradability of biofilm extracellular polymeric substances. Chemosphere. 2003;50:63–69.

Zogaj X, Nimtz M, Rohde M, Bokranz W, Römling U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 2001;39:1452–1463.

##submission.downloads##

Опубліковано

2016-12-15

Номер

Розділ

ОГЛЯДОВІ ТА ТЕОРЕТИЧНІ СТАТТІ