DOI: https://doi.org/10.18524/2307-4663.2011.3(15).92878

БАКТЕРIАЛЬНI СИНТЕТАЗИ ОКСИДУ АЗОТУ

Б. М. Галкін, В. О. Iваниця, М. Б. Галкін

Анотація


У статті представлено огляд сучасних наукових публікацій про молекулярну структуру, механізми синтезу, молекулярну біологію, генетику і біологічні функції бактеріальних синтетаз оксиду азоту.

Ключові слова


бактеріальні синтетази оксиду азоту; гени NO-синтетаз; регуляторна та сигнальна функції

Повний текст:

PDF

Пристатейна бібліографія ГОСТ


Adak S., Aulak K.S., Stuehr D.J. Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis // J. Biol. Chem. – 2002. – V. 227, № 18. – P. 16167–16171.

Adak S, Bilwes A.M., Panda K. Cloning, expression, and characterization of a nitric oxide synthase protein from Deinococcus radiodurans // Proc. Nat. Acad. Sci. USA. – 2002. – V. 99, № 1. – P. 107–112.

Alderton W.K., Cooper C.E, Knowles R.G. Nitric oxide synthases: structure, function and inhibition. // Biochem. J. – 2001. – V. 357, № 3. – Р. 593–615.

Battista J.R. Against all odds: the survival strategies of Deinococcus radiodurans // Annu. Rev. Microbiol. – 1997. – V. 51, № 2. – Р. 203–224.

Bird L.E., Ren J., Zhang J., Foxwell N., Hawkins A.R., Charles I.G., Stammers D.K. Crystal structure of SANOS, a bacterial nitric oxide synthase oxygenase protein from Staphylococcus aureus. // Structure. – 2002. – V. 10, № 12. – P. 1687–1696.

Buddha M.R., Tao-Tao, Parry R.J., Crane B.R. Regioselective nitration of tryptophan by a complex between bacterial nitric-oxide synthase and tryptophanyltRNA synthetase. // J.Biol.Chem. – 2004. – V. 279, № 48. – P. 49567–49570.

Buddha M.R., Keery K.M., Crane B.R. An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans. // Proc. Natl. Acad. Sci. U.S.A. – 2004. – V. 101, № 45. – Р. 15881–15886.

Buddha M.R., Crane B.R. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan: Insight into subunit cooperativity and domain motions linked to catalysis. // J. Biol. Chem. – 2005. – V. 280, № 36. – Р. 31965–31973.

Buddha M.R., Crane B.R. Structure and activity of an aminoacyltRNA synthetase that charges tRNA with nitro-tryptophan. // Nat. Struct. Mol. Biol. – 2005. – V. 12, № 3. – P. 274–275.

Cabello P., Roldan M.D., Moreno-Vivian C. Nitrate reduction and the nitrogen cycle in archaea. // Microbiol. – 2004. – V. 150, № 11. – P. 3527–3546.

Carter G.T. Direct biochemical nitration in the biosynthesis of dioxapyrrolomycin – a unique mechanism for the introduction of nitrogroups in microbial products. // J. Chem. Soc. Chem. Commun. – 1989. – V. 404, № 11. – P. 1271–1273.

Chartier F.J.M., Couture M. Resonance Raman spectra of the nitric oxide complexes of the nitric oxide synthase from Staphylococcus aureus reveal pterin-induced structural modifications of the heme. // Biophys. J. – 2005. – v. 88, № 1. – P. 390A–400A.

Chen Y.J., Rosazza J.P.N. A bacterial, nitric oxide synthase from a Nocardia species. // Biochem. and Biophys. Res. Commun. – 1994. – V. 203, № 2. – Р. 1251–1258.

Crane B.R., Sudhamsu J., Patel B.A. Bacterial nitric oxide synthases. // Annu. Rev. Biochem. – 2010. – V. 79, № 4. – Р. 445–470.

Fawcett P., Paddon C. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. // J. Bacteriol. – 2003. – V. 185, № 1. – P. 243–253.

Feng Сh., Roman L.G., Hazzard J.T., Ghosh D.K., Tollin G., Masters B.S.S. Deletion of the autoregulatory insert modulates intraprotein electron transfer in rat neuronal nitric oxide synthase. // FEBS Lett. – 2008. – V. 582, № 18. – P. 2768–2772.

Gusarov I., Nudler E. NO-mediated cytoprotection: Instant adaptation to oxidative stress in bacteria. // Proc. Nat. Acad. Sci. U.S.A. – 2005. – V. 102, № 39. – P. 13855–13860.

Gusarov I., Starodubtseva M., Wang Z.Q., McQuade L., Lippard S.J., Stuehr D.J., Nudler E. Bacterial nitric-oxide synthases operate without a dedicated redox partner. // J. Biol.Chem. – 2008. – V. 283, № 19. – P. 13140–13147.

Gusarov I., Shatalin K., Starodubtseva M., Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. // Science. – 2009. – V. 325, № 5946. – P. 1380–1384.

Healy F.G., Wach M., Krasnoff S.B., Gibson D.M., Loria R. The txtA,B genes of the plant pathogen Streptomyces acidiscabies encode a peptide synthetase required for phytotoxin thaxtomin A production and pathogenicity. // Mol. Microbiol. – 2000. – V. 38, № 4. – P. 794–804.

Helmann J.D., Wu M.F.W., Gaballa A., Kobel P.A., Morshedi M.M., Fawcett P., Paddon C. The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors // J. Bacteriol. – 2003. – V. 185, № 1. – P. 243–253.

Hochgräfe F., Wolf C., Fuchs S., Liebeke M., Lalk M., Engelmann S., Hecker M. Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. // J. Bacteriol. – 2008. – V. 190, № 14. – P. 4997–5008.

Jansson E., Lindblad P. Cloning and molecular characterization of a presumptive argF, a structural gene encoding ornithine carbamoyl transferase (OCT), in the cyanobacterium Nostoc sp. PCC 73102. // Physiol. Plant. – 1998. – V. 103, № 3. – P. 347–353.

Johnson E.G., Krasnoff S.B., Bignell D.R.D., Chung W.-C., Tao T., Parry R.J. 4-Nitrotryptophan is a substrate for the non-ribosomal peptide synthetase TxtB in the thaxtomin. A biosynthetic pathway mmi 6780. // Mol. Microbiol. – 2009. – V. 73, № 3. – P. 409–418.

Jung Ch., Stuehr D.J., Ghosh D.K. FT-infrared spectroscopic studies of the iron ligand CO stretch mode of iNOS oxygenase domain: Effect of arginine and tetrahydrobiopterin. // Biochem. – 2006. – V. 45, № 5. – P. 1480–1489.

Kers J.A., Wach M.J., Krasnoff S.B., Widom J., Cameron K.D., Bukhalid R.A., Gibson D.M., Crane B.R., Loria R. Nitration of a peptide phytotoxin by bacterial nitric oxide synthase. // Nature. – 2004. – V. 429, № 6987. – P. 79–82.

Koppenol W.H. The basic chemistry of nitrogen monoxide and peroxynitrite. // Free Radic. Biol. Med. – 1998. – V. 25, № 4–5. – P. 385–391.

Kumar A., Toledo J.C., Patel R.P., Lancaster J.R.Jr., Steyn A.J.C. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. // Proc. Nat. Acad. Sci. USA. – 2007. – V. 104, № 28. – P. 11568– 11573.

Kunst F., Ogasawara N., Moszer I., et. al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. // Nature. – 1997. – V. 390, № 6657. – P. 249–256.

Li D., Hayden E.J., Panda K., Stuehr D.J., Deng H., Rousseau L., Yeh S.N. Regulation of the monomer-dimer equilibrium in inducible nitricoxide synthase by nitric oxide. // J.Biol. Chem. – 2006. – V. 281, № 12. – P. 8197–8204.

Li F., Sonveaux P., Rabbani Z.N., Liu S., Huang Q., Li C-Yu. Regulation of HIF-1α stability through S-nitrosylation// Mol.Cell. – 2007. – V. 26, № 1. – P. 63–74.

Lia C-Q, Kima M.Y Godoya L.C., Thiantanawata A., Trudela L.J., Wogan G.N. Nitric oxide activation of Keap1/Nrf2 signaling in human colon carcinoma cells. // Proc. Nat. Acad. Sci. USA. – 2009. – V. 106, № 34. – P. 14547–14551.

Marshall H.E., Merchant K, Stamler J.S. Nitrosation and oxidation in the regulation of gene expression. // FASEB J. – 2000. – V. 14, № 13. – P. 1889–1900.

Moore C.M., Nakano M.M., Wang T., Ye R.W., Helmann J.D. Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprusside. // J. Bacteriol. – 2004. – V. 186, № 14. – P. 4655–4664.

Morita H., Yoshikawa H., Sakata R., Nagata Y., Tanaka Н. Synthesis of nitric oxide from the two equivalent guanidino nitrogens of L-arginine by Lactobacillus fermentum. // J. Bacteriol. – 1997. – V. 179, № 24. – P. 7812–7815.

Pant K., Bilwes A.L., Adak S., Stuehr D.J., Crane B.R. Structure of a nitric oxide synthase heme protein from Bacillus subtilis. // Biochem. – 2002. – V. 41, № 37. – P. 11071–11079.

Pant К., Crane B.R. Nitrosyl−heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation. // Biochem. – 2006. – V. 45, № 8. – P. 2537–2544.

Patel B.A., Moreau M., Widom J., Chen H., Yin L., Hua Y., Crane B.R. Endogenous nitric oxide regulates the recovery of the radiationresistant bacterium Deinococcus radiodurans from exposure to UV light. // Proc. Natl. Acad. Sci. USA. – 2009. – V. 106, № 43. – Р. 18183–18188.

Price M.S., Chao L.Y., Marletta M.A. Shewanella oneidensis MR-1 H-NOX regulation of a histidine kinase by nitric oxide. // Biochem. – 2007. – V. 46, № 48. – P. 13677–13683.

Raman C.S., Martasek P., Masters B.S.S. Structural themes determining function in nitric oxide synthases. // In: The Porphyrin Handbook. Eds. Kadish K. M., Smith K. M., Guilard R. N.Y.: 2000. – Acad. Press. – P. 293–339.

Roman L.J., Masters B.S.S. Electron transfer by neuronal nitricoxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements. // J.Biol.Chem. – 2006. – V. 281, № 32. – P. 23111–23118.

Rogstam A., Larsson J.T., Kjelgaard P., von Wachenfeldt C. Mechanisms of adaptation to nitrosative stress in Bacillus subtilis. // J. Bacteriol. – 2007. – V. 189, № 8. – P. 3063–3071.

Schneiker S., Perlova O., Kaizer O., Gerth K. et. al. Complete genome sequence of the myxobacterium Sorangium cellulosum. // Nat. Biotech. – 2007. – V. 25, № 11. – P. 1281–1289.

Shatalin K., Gusarov I., Avetissova E., Shatalina Y., McQuade L.E., Lippard S.J., Nudler E. Bacillus anthracis-derived nitric oxide is essential for pathogen virulence and survival in macrophages. // Proc. Nat. Acad. Sci. U.S.A. – 2008. – V. 105, № 3. – P. 1009–1013.

Sparks J.P., Dzikovski B., Crane B.R., Gibson D.M., Loria R. Plant-pathogenic Streptomyces species produce nitric oxide synthase-derived nitric oxide in response to host signals. // Chem. Biol. – 2008. – V. 15, № 1. – P. 43–50.

Spiro S. The nitric oxide response of Escherichia coli. // Nitric Oxide. – 2006. – V. 14, № 2. – P. A20–A12.

Spiro S. Regulators of bacterial responses to nitric oxide. // FEMS Microbiol. Rev. – 2007. – V. 31, № 2. – P. 193–211.

Stuehr D.J., Santolini J., Adak S. Update on mechanism and catalytic regulation in the NO synthases. // J. Biol. Chem. – 2004. – V. 279, № 35. – P. 3616–3617.

Sudhamsu J., Crane B.R. Structure and reactivity of a thermostable prokaryotic nitric-oxide synthase that forms a long-lived oxy-heme complex. // J. Biol .Chem. – 2006. – V. 281, № 14. – P. 9623–9632.

Sudhamsu J., Crane B.R. Bacterial nitric oxide synthases: what are they good for? // Trends Microbiol. – 2009. – V. 17, № 5. – P. 212–218.

Tewari R.K., Hahn E.J, Paek K.Y. Unction of nitric oxide and superoxide anion in the adventitious root development and antioxidant defence in Panax ginseng. // Plant Cell. Rep. – 2008 . – V. 27, № 3. – P. 563–573.

Viator R.J., Rest R.F., Hildebrandt E., McGee D.J. Characterization of Bacillus anthracis arginase: effects of pH, temperature, and cell viability on metal preference. // BMC Biochem. – 2008. – V. 9, № 1. – P. 1–15.

Wang Z-Q., Wei Ch., Sharma T., Pant K., Crane B.R., Stuehr D.J. A conserved val to ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles. // J. Biol. Chem. – 2004. – V. 279, № 18. – P. 19018–19025.

Wang Z-Q., Lawson R.J., Buddha M.R., Crane B.R. Bacterial flavodoxins support nitric oxide production by Bacillus subtilis nitric-oxide synthase. // J.Biol.Chem. – 2007. – V. 282, № 4. – P. 2196–2202.

Wei Y., Zhou H., Sun Y., He Y., Luo Y. Insight into the catalytic mechanism of arginine deiminase: Functional studies on the crucial sites. // Proteins. – 2007. – V. 66, № 3. – P. 740–750.

White O., Eisen J.A., Heidelberg J.F., et. al. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. // Science. – 1999. – V. 286, № 5444. – P. 1571–1577.

Yamasaki H., Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. // FEBS Lett. – 2000. – V. 486, № 1. – P. 89–92.





Creative Commons License
Ця робота ліцензована Creative Commons Attribution-NonCommercial 4.0 International License.

ISSN 2076-0558 (Print); 2307-4663 (Online)

DOI 10.18524/2307-4663