БІОТРАНСФОРМАЦІЯ КСЕНОБІОТИКІВ МІКРОБІОТОЮ ШЛУНКОВО- КИШКОВОГО ТРАКТУ ТА ЇЇ НАСЛІДКИ ДЛЯ ЛЮДИНИ

Автор(и)

DOI:

https://doi.org/10.18524/2307-4663.2020.2(49).211285

Ключові слова:

кишкова мікробіота, біотрансформація ксенобіотиків, ензими, барвники, важкі метали, лікарські препарати

Анотація

В огляді представлені дані сучасних джерел літератури про біотрансформацію ксенобітиків мікробіотою шлунково-кишкового тракту людини. Приведені основні ензими, які беруть участь у біотрансформації. Показана роль біотрансформації ензимів мікробіоти у активації та пригнічення лікарських засобів, детоксикації та токсикації чужорідних сполук та важких металів.

Посилання

Koppel N, Rekdal V-M, Balskus EP Chemical transformation of xenobiotics by the human gut microbiota // Science. 2017; 356(6344): 1–11.

Sender R, Fuchs S, Milo R Revised estimates for the number of human and bacteria cells in the body // PLOS Biology. 2016; 14(8): e1002533.

Aron-Wisnewsky J, Doré J, Clement . The importance of the gut microbiota after bariatric surgery // Nat. Rev. Gastroenterol. Hepatol. 2012; 9(10): 590– 598.

Eckburg PB Diversity of the human intestinal microbial flora // Science. 2005; 308(572):1635–1638.

Wang B, Hu L, Siahaan T Drug Delivery: Principles and Applications, Wiley, 2016:757p.

Sousa T, Paterson R, Moore V et al. The gastrointestinal microbiota as a site for the biotransformation of drugs // Int. J. Pharmac. 2008; 363(1–2): P. 1–25.

Galkin BM, Ivanytia VO, Filipova TO Mechanisms of biodegradation of xenobiotics, Odessa, II Mechnikov ONU, 2017: 148 p (in Ukraine).

Linhardt RJ, Galliher PM, Cooney CL Polysaccharide lyases // Appl. Biochem. Biotechnol. 1987; 12 (2): 135–176.

Ryan A, Kaplan E, Nebel J-C et al. Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: Azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes // PLoS. 2014; 9(6): e98551.

Martínez-del Campo A, Bodea S, Hamer H A et al Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria // mBio. 2015; 6 (2): e00042.

Kaoutari AE, Armougom F, Gordon J I et al The abundance and variety of carbohydrate-active enzymes in the human gut microbiota // Nat. Rev. Microbiol. 2013; 11 (7):497–504.

Levin BJ, Huang YY, Peck SC et al A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline // Science. 2017 ; 355(6325): eaai8386.

Jancova P, Anzenbacher P, Anzenbacherova E Phase II drug metabolizing enzymes // Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2019; 154(1): 103–116.

Wang J, Yadav V, Smart A L et al Stability of peptide drugs in the colon // Eur. J. Pharmac. Sci. 2015; 78(1): 31–36.

Tozaki H, Emi Y, Horisaka E, Fujita T et al Degradation of insulin and calcitonin and their protection by various protease inhibitors in rat caecal contents: Implications in peptide delivery to the colon // J. Pharmacy Pharm. 1997; 49(2): 164–168.

Wallace BD, Roberts AB, Pollet RM et al Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity // Chem. Biol. 2015; 22(9): 1238–1249.

Ulmer JE, Vilén EM, Namburi RB et al. Characterization of glycosaminoglycan (GAG) sulfatases from the human gut symbiont bacteroides the taiotaomicron reveals the first GAG-specific bacterial endosulfatase // J. Biol. Chem. 2014; 289(35): 24289–24303.

Lukatela G, Krauss N, Theis K, et al. Crystal structure of human arylsulfatase A: The aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis // Biochem.1998; 37(11):3654–3664.

Donohoe DR, Garge N, Zhang X et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon // Cell Metab. 2011; 13(5): P. 517–526.

Cooper AJL, Krasnikov BF, Niatsetskaya ZV et al. Cysteine S-conjugate β-lyases: important roles in the metabolism of naturally occurring sulfur and selenium-containing compounds, xenobiotics and anticancer agents // Amino Acids. 2010; 4(1): P. 7–27.

Claus SP, Guillou H, Ellero-Simatos S The gut microbiota: a major player in the toxicity of environmental pollutants? // Npj Biofilms and Microbiomes. 2016; 2(1):1-11.

Rossol I, Pühler A The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine // J. Bacteriol. 1992; 174(9): 2968–2977.

Rafii F, Hall JD, Cerniglia CE Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract // Food Chem. Toxicol. 1997; 35(9): 897–901.

Lee SC, Renwick AG Sulphoxide reduction by rat intestinal flora and by Escherichia coli in vitro // Biochem. Pharm. 1995; 49(11): 1567–1576.

Laue H, Friedrich M, Ruff J, Cook AM Dissimilatory sulfite reductase (Desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit // J. Bacteriol. 2001;183(5):1727–1733.

Haiser HJ, Gootenberg DB, Chatman K et al Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta // Science.2013; 341(6143); 295–298.

Peppercorn MA, Goldman P The role of intestinal bacteria in the metabolism of salicylazosulfapyridine // J. Pharm. Exp. Therap. 1972; 181 (3): 555-562.

Lavrijsen K, van Dyck D, van Houdt J et al. Reduction of the prodrug loperamide oxide to its active drug loperamide in the gut of rats, dogs, and humans // Drug Metab. Dispos. 1995; 23(3): 354–362.

Kumano T, Fujiki E, Hashimoto Y, Kobayashi M Discovery of a sesaminmetabolizing microorganism and a new enzyme // Proc. Nat. Acad. Sci.2016; 113(32): 9087–9092.

Ticak T, Kountz DJ, Girosky KE et al. A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase // Proc. Nat. Acad. Sci. 2014;111 (43): E4668–E4676.

Delomenie C, Fouix S, Longuemaux S et al. Identification and functional characterization of arylamine N-Acetyltransferases in eubacteria: Evidence for highly selective acetylation of 5-aminosalicylic acid // J. Bacteriol. 2001;183.(11): 3417–3427.

Sutton D, Butler AM, Nadin L, Murray M Role of CYP3A4 in Human Hepatic Diltiazem N-Demethylation: Inhibition of CYP3A4 Activity by Oxidized Diltiazem Metabolites // J. Pharmacol. Exp. Ther . 1997; 282 (1): 294-300.

Buckel W, Golding B T Radical enzymes in anaerobes // Ann. Rev. Microbiol. 2006; 60 (1): 27–49.

Bodea S, Funk MA, Balskus EP, Drennan CL Molecular basis of C–N bond cleavage by the glycyl radical enzyme choline trimethylamine-lyase // Cell Chem. Biol. 2016; 23(10): 1206–1216.

Selmer T, Andrei PI p-Hydroxyphenylacetate decarboxylase from Clostridium difficile // Euro. J. Biochem 2001: 268(5):1363–1372.

Clayton TA, Baker D, Lindon J C Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism // Proc. Nat. Acad. Sci. 2009; 106(34): 14728–14733.

Borzelleca JF, Depukat K, Hallagan JB Lifetime toxicity/carcinogenicity studies of FD & C blue No. 1 (Brilliant blue FCF) in rats and mice // Food Chem. Toxicol. 1990; 28(4): 221–234.

Singh Z, Chadha P Textile industry and occupational cancer// J. Occup. Med. Toxicol. 2016; 11(1): 1-6.

Ingelfinger JR Melamine and the global implications of food contamination // New Eng. J. Med. 2008; 359(26): 2745–2748.

Zheng X, Zhao A, Xie G Melamine-induced renal toxicity is mediated by the gut microbiota // Sci. Trans. Med. 2013; 5 (172): 172ra22 (1-10).

Rowland IR, Davies M J Grasso P Metabolism of methylmercuric chloride by the gastro-intestinal flora of the rat// Xenobiotica 1978;8(1): 37–43.

Rowland IR, Davies M J, Evans J G The effect of the gastrointestinal flora on tissue content of mercury and organomercurial neurotoxicity in rats given methylmercuric chloride // Dev. Toxicol. Environ. Sci.1980; 8(1): 79–82.

Liebert CA, Wireman J, Smith T, Summers AO Phylogeny of mercury resistance (mer) operons of gramnegative bacteria isolated from the fecal flora of primates // Appl. Environ. Microbiol. 1997; 63(3): 1066–1076.

Diaz-Bone RA, van de Wiele TR Biovolatilization of metal(loid)s by intestinal microorganisms in the simulator of the human intestinal microbial ecosystem // Environ. Sci. Tech. 2009;43 (14): 5249–5256.

Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism // Nat. Rev. Microbiol. 2016; 14(5): 273–287.

Takeno S Comparative developmental toxicity and metabolism of nitrazepam in rats and mice // Toxicol. Appl. Pharmacol. 1993; 121(2): 233–238.

Okuda H, Nishiyama A, Ogura K et al. Lethal drug interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs // Drug Metab. Dispos.1997; 25(2): 270–273.

Vetizou M, Pitt J-M, Daillere R et al. Anticancer immunotherapy by CTLA4 blockade relies on the gut microbiota // Science. 2015; 350 (6264): 1079– 1084.

Shin N-R, Lee J-C, Lee H-Y et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice // Gut. 2013; 63(5):727–735.

Strong HA, Renwick AG, George CF et al. The reduction of sulphinpyrazone and sulindac by intestinal bacteria // Xenobiotica. 1987; 17(6): 685–696.

Lehouritis P, Cummins J, Stanton M, et al. Local bacteria affect the efficacy of chemotherapeutic drugs // Sci. Rep. 2015; 5(1):1-12.

Calne DB, Reid JL, Vakil SD et al. Idiopathic parkinsonismt treated with an extracerebral decarboxylase inhibitor in combination with levodopa // BMJ. 1971; 3 (5777): 729–732.

Bergmark J, Carlsson A, Granerus A-K et al. Decarboxylation of orally administered l-dopa in the human digestive tract// Naunyn-Schmiedeberg’s Arch. Pharm.1972; 272(4):437–440.

Goldin BR, Peppercorn MA, Goldman P Contributions of host and intestinal microflora in the metabolism of L-dopa by the rat // J. Pharmacol. Exp. Ther.1973; 186(1):160–166.

Sharon G, Sampson TR, Geschwind DH, Mazmanian S K The central nervous system and the gut microbiome // Cell. 2016; 167 (4): 915–932.

Lindenbaum J, Rund DG, Butler VP Inactivation of digoxin by the gut flora: Reversal by antibiotic therapy // New Eng. J. Med.1981;305(14):789–794.

Saha RI, Butler V, Neu H, Lindenbaum J Digoxin-inactivating bacteria: identification in human gut flora // Science 1983; 220 (4594): 325–327.

##submission.downloads##

Опубліковано

2020-09-30

Номер

Розділ

ОГЛЯДОВІ ТА ТЕОРЕТИЧНІ СТАТТІ